Corticospinal excitability enhancement with simultaneous transcranial near-infrared stimulation and anodal direct current stimulation of motor cortex. 2021

Penghui Song, and Siran Li, and Wensi Hao, and Min Wei, and Jianghong Liu, and Hua Lin, and Shimin Hu, and Xiaona Dai, and Jing Wang, and Rong Wang, and Yuping Wang
Central Laboratory, Xuanwu Hospital, Capital Medical University, Beijing, China; Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China; Beijing Geriatric Medical Research Center, Beijing, China; Beijing Key Laboratory of Neuromodulation, Beijing, China.

Non-invasive brain stimulation (NIBS) is beneficial to many neurological and psychiatric disorders by modulating neuroplasticity and cortical excitability. However, recent studies evidence that single type of NIBS such as transcranial direct current stimulation (tDCS) does not have meaningful clinical therapeutic responses due to their small effect size. Transcranial near-infrared stimulation (tNIRS) is a novel form of NIBS. Both tNIRS and tDCS implement its therapeutic effects by modulating cortical excitability but with different mechanisms. We hypothesized that simultaneous tNIRS and tDCS is superior to single stimulation, leading to a greater cortical excitability. Sixteen healthy subjects participated in a double-blind, sham-controlled, cross-over designed study. Motor evoked potentials (MEPs) were used to measure motor cortex excitability. The changes of MEP were calculated and compared in the sham condition, tDCS stimulation condition, tNIRS condition and the simultaneous tNIRS and anodal tDCS condition. tDCS alone and tNIRS alone both elicited higher MEP after stimulation, while the MEP amplitude in the simultaneous tNIRS and tDCS condition was significantly higher than either tNIRS alone or tDCS alone. The enhancement lasted up to at least 30 minutes after stimulation, indicating simultaneous 820 nm tNIRS with 2 mA anodal tDCS have a synergistic effect on cortical plasticity. Simultaneous application of tNIRS with tDCS produces a stronger cortical excitability effect. The simultaneous tNIRS and tDCS is a promising technology with exciting potential as a means of treatment, neuro-enhancement, or neuro-protection.

UI MeSH Term Description Entries
D007259 Infrared Rays That portion of the electromagnetic spectrum usually sensed as heat. Infrared wavelengths are longer than those of visible light, extending into the microwave frequencies. They are used therapeutically as heat, and also to warm food in restaurants. Heat Waves,Heat Wave,Infrared Ray,Ray, Infrared,Rays, Infrared,Wave, Heat,Waves, Heat
D008297 Male Males
D009044 Motor Cortex Area of the FRONTAL LOBE concerned with primary motor control located in the dorsal PRECENTRAL GYRUS immediately anterior to the central sulcus. It is comprised of three areas: the primary motor cortex located on the anterior paracentral lobule on the medial surface of the brain; the premotor cortex located anterior to the primary motor cortex; and the supplementary motor area located on the midline surface of the hemisphere anterior to the primary motor cortex. Brodmann Area 4,Brodmann Area 6,Brodmann's Area 4,Brodmann's Area 6,Premotor Cortex and Supplementary Motor Cortex,Premotor and Supplementary Motor Cortices,Anterior Central Gyrus,Gyrus Precentralis,Motor Area,Motor Strip,Precentral Gyrus,Precentral Motor Area,Precentral Motor Cortex,Premotor Area,Premotor Cortex,Primary Motor Area,Primary Motor Cortex,Secondary Motor Areas,Secondary Motor Cortex,Somatic Motor Areas,Somatomotor Areas,Supplementary Motor Area,Area 4, Brodmann,Area 4, Brodmann's,Area 6, Brodmann,Area 6, Brodmann's,Area, Motor,Area, Precentral Motor,Area, Premotor,Area, Primary Motor,Area, Secondary Motor,Area, Somatic Motor,Area, Somatomotor,Area, Supplementary Motor,Brodmann's Area 6s,Brodmanns Area 4,Brodmanns Area 6,Central Gyrus, Anterior,Cortex, Motor,Cortex, Precentral Motor,Cortex, Premotor,Cortex, Primary Motor,Cortex, Secondary Motor,Cortices, Secondary Motor,Gyrus, Anterior Central,Gyrus, Precentral,Motor Area, Precentral,Motor Area, Primary,Motor Area, Secondary,Motor Area, Somatic,Motor Areas,Motor Cortex, Precentral,Motor Cortex, Primary,Motor Cortex, Secondary,Motor Strips,Precentral Motor Areas,Precentral Motor Cortices,Premotor Areas,Primary Motor Areas,Primary Motor Cortices,Secondary Motor Area,Secondary Motor Cortices,Somatic Motor Area,Somatomotor Area,Supplementary Motor Areas
D009473 Neuronal Plasticity The capacity of the NERVOUS SYSTEM to change its reactivity as the result of successive activations. Brain Plasticity,Plasticity, Neuronal,Axon Pruning,Axonal Pruning,Dendrite Arborization,Dendrite Pruning,Dendritic Arborization,Dendritic Pruning,Dendritic Remodeling,Neural Plasticity,Neurite Pruning,Neuronal Arborization,Neuronal Network Remodeling,Neuronal Pruning,Neuronal Remodeling,Neuroplasticity,Synaptic Plasticity,Synaptic Pruning,Arborization, Dendrite,Arborization, Dendritic,Arborization, Neuronal,Arborizations, Dendrite,Arborizations, Dendritic,Arborizations, Neuronal,Axon Prunings,Axonal Prunings,Brain Plasticities,Dendrite Arborizations,Dendrite Prunings,Dendritic Arborizations,Dendritic Prunings,Dendritic Remodelings,Network Remodeling, Neuronal,Network Remodelings, Neuronal,Neural Plasticities,Neurite Prunings,Neuronal Arborizations,Neuronal Network Remodelings,Neuronal Plasticities,Neuronal Prunings,Neuronal Remodelings,Neuroplasticities,Plasticities, Brain,Plasticities, Neural,Plasticities, Neuronal,Plasticities, Synaptic,Plasticity, Brain,Plasticity, Neural,Plasticity, Synaptic,Pruning, Axon,Pruning, Axonal,Pruning, Dendrite,Pruning, Dendritic,Pruning, Neurite,Pruning, Neuronal,Pruning, Synaptic,Prunings, Axon,Prunings, Axonal,Prunings, Dendrite,Prunings, Dendritic,Prunings, Neurite,Prunings, Neuronal,Prunings, Synaptic,Remodeling, Dendritic,Remodeling, Neuronal,Remodeling, Neuronal Network,Remodelings, Dendritic,Remodelings, Neuronal,Remodelings, Neuronal Network,Synaptic Plasticities,Synaptic Prunings
D011712 Pyramidal Tracts Fibers that arise from cells within the cerebral cortex, pass through the medullary pyramid, and descend in the spinal cord. Many authorities say the pyramidal tracts include both the corticospinal and corticobulbar tracts. Corticobulbar Tracts,Corticospinal Tracts,Decussation, Pyramidal,Corticobulbar Tract,Corticospinal Tract,Pyramidal Decussation,Pyramidal Tract,Tract, Corticobulbar,Tract, Corticospinal,Tract, Pyramidal,Tracts, Corticobulbar,Tracts, Corticospinal,Tracts, Pyramidal
D005260 Female Females
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000328 Adult A person having attained full growth or maturity. Adults are of 19 through 44 years of age. For a person between 19 and 24 years of age, YOUNG ADULT is available. Adults
D019054 Evoked Potentials, Motor The electrical response evoked in a muscle or motor nerve by electrical or magnetic stimulation. Common methods of stimulation are by transcranial electrical and TRANSCRANIAL MAGNETIC STIMULATION. It is often used for monitoring during neurosurgery. Motor Evoked Potentials,Evoked Potential, Motor,Motor Evoked Potential,Potential, Motor Evoked,Potentials, Motor Evoked
D065908 Transcranial Direct Current Stimulation A technique of brain electric stimulation therapy which uses constant, low current delivered via ELECTRODES placed on various locations on the scalp. Anodal Stimulation Transcranial Direct Current Stimulation,Anodal Stimulation tDCS,Cathodal Stimulation Transcranial Direct Current Stimulation,Cathodal Stimulation tDCS,Repetitive Transcranial Electrical Stimulation,Transcranial Alternating Current Stimulation,Transcranial Electrical Stimulation,Transcranial Random Noise Stimulation,tDCS,Anodal Stimulation tDCSs,Cathodal Stimulation tDCSs,Electrical Stimulation, Transcranial,Electrical Stimulations, Transcranial,Stimulation tDCS, Anodal,Stimulation tDCS, Cathodal,Stimulation tDCSs, Anodal,Stimulation tDCSs, Cathodal,Stimulation, Transcranial Electrical,Stimulations, Transcranial Electrical,Transcranial Electrical Stimulations,tDCS, Anodal Stimulation,tDCS, Cathodal Stimulation,tDCSs, Anodal Stimulation,tDCSs, Cathodal Stimulation

Related Publications

Penghui Song, and Siran Li, and Wensi Hao, and Min Wei, and Jianghong Liu, and Hua Lin, and Shimin Hu, and Xiaona Dai, and Jing Wang, and Rong Wang, and Yuping Wang
January 2021, PloS one,
Penghui Song, and Siran Li, and Wensi Hao, and Min Wei, and Jianghong Liu, and Hua Lin, and Shimin Hu, and Xiaona Dai, and Jing Wang, and Rong Wang, and Yuping Wang
April 2019, Brain sciences,
Penghui Song, and Siran Li, and Wensi Hao, and Min Wei, and Jianghong Liu, and Hua Lin, and Shimin Hu, and Xiaona Dai, and Jing Wang, and Rong Wang, and Yuping Wang
January 2013, PloS one,
Penghui Song, and Siran Li, and Wensi Hao, and Min Wei, and Jianghong Liu, and Hua Lin, and Shimin Hu, and Xiaona Dai, and Jing Wang, and Rong Wang, and Yuping Wang
January 2018, Frontiers in human neuroscience,
Penghui Song, and Siran Li, and Wensi Hao, and Min Wei, and Jianghong Liu, and Hua Lin, and Shimin Hu, and Xiaona Dai, and Jing Wang, and Rong Wang, and Yuping Wang
June 2004, Experimental brain research,
Penghui Song, and Siran Li, and Wensi Hao, and Min Wei, and Jianghong Liu, and Hua Lin, and Shimin Hu, and Xiaona Dai, and Jing Wang, and Rong Wang, and Yuping Wang
September 2016, The European journal of neuroscience,
Penghui Song, and Siran Li, and Wensi Hao, and Min Wei, and Jianghong Liu, and Hua Lin, and Shimin Hu, and Xiaona Dai, and Jing Wang, and Rong Wang, and Yuping Wang
February 2019, Neurophysiologie clinique = Clinical neurophysiology,
Penghui Song, and Siran Li, and Wensi Hao, and Min Wei, and Jianghong Liu, and Hua Lin, and Shimin Hu, and Xiaona Dai, and Jing Wang, and Rong Wang, and Yuping Wang
September 2016, Restorative neurology and neuroscience,
Penghui Song, and Siran Li, and Wensi Hao, and Min Wei, and Jianghong Liu, and Hua Lin, and Shimin Hu, and Xiaona Dai, and Jing Wang, and Rong Wang, and Yuping Wang
June 2018, Brain research bulletin,
Penghui Song, and Siran Li, and Wensi Hao, and Min Wei, and Jianghong Liu, and Hua Lin, and Shimin Hu, and Xiaona Dai, and Jing Wang, and Rong Wang, and Yuping Wang
March 2015, The European journal of neuroscience,
Copied contents to your clipboard!