Cholesterol and cholesterol bilayer domains inhibit binding of alpha-crystallin to the membranes made of the major phospholipids of eye lens fiber cell plasma membranes. 2021

Raju Timsina, and Geraline Trossi-Torres, and Matthew O'Dell, and Nawal K Khadka, and Laxman Mainali
Department of Physics, Boise State University, Boise, ID, 83725, USA.

The concentration of α-crystallin decreases in the eye lens cytoplasm, with a corresponding increase in membrane-bound α-crystallin during cataract formation. The eye lens's fiber cell plasma membrane consists of extremely high cholesterol (Chol) content, forming cholesterol bilayer domains (CBDs) within the membrane. The role of high Chol content in the lens membrane is unclear. Here, we applied the continuous-wave electron paramagnetic resonance spin-labeling method to probe the role of Chol and CBDs on α-crystallin binding to membranes made of four major phospholipids (PLs) of the eye lens, i.e., phosphatidylcholine (PC), sphingomyelin (SM), phosphatidylserine (PS), and phosphatidylethanolamine (PE). Small unilamellar vesicles (SUVs) of PC, SM*, and PS with 0, 23, 33, 50, and 60 mol% Chol and PE* with 0, 9, and 33 mol% Chol were prepared using the rapid solvent exchange method followed by probe-tip sonication. The 1 mol% CSL spin-labels used during SUVs preparation distribute uniformly within the Chol/PL membrane, enabling the investigation of Chol and CBDs' role on α-crystallin binding to the membrane. For PC, SM*, and PS membranes, the binding affinity (Ka) and the maximum percentage of membrane surface occupied (MMSO) by α-crystallin decreased with an increase in Chol concentration. The Ka and MMSO became zero at 50 mol% Chol for PC and 60 mol% Chol for SM* membranes, representing that complete inhibition of α-crystallin binding was possible before the formation of CBDs within the PC membrane but only after the formation of CBDs within the SM* membrane. The Ka and MMSO did not reach zero even at 60 mol% Chol in the PS membrane, representing CBDs at this Chol concentration were not sufficient for complete inhibition of α-crystallin binding to the PS membrane. Both the Ka and MMSO were zero at 0, 9, and 33 mol% Chol in the PE* membrane, representing no binding of α-crystallin to the PE* membrane with and without Chol. The mobility parameter profiles decreased with an increase in α-crystallin binding to the membranes; however, the decrease was more pronounced for the membrane with lower Chol concentration. These results imply that the membranes become more immobilized near the headgroup regions with an increase in α-crystallin binding; however, the Chol antagonizes the capacity of α-crystallin to decrease the mobility near the headgroup regions of the membranes. The maximum splitting profiles remained the same with an increase in α-crystallin concentration, but there was an increase in the maximum splitting with an increase in the Chol concentration in the membranes. It implies that membrane order near the headgroup regions does not change with an increase in α-crystallin concentration but increases with an increase in Chol concentration in the membrane. Based on our data, we hypothesize that the Chol and CBDs decrease hydrophobicity (increase polarity) near the membrane surface, inhibiting the hydrophobic binding of α-crystallin to the membranes. Thus, our data suggest that Chol and CBDs play a positive physiological role by preventing α-crystallin binding to lens membranes and possibly protecting against cataract formation and progression.

UI MeSH Term Description Entries
D007908 Lens, Crystalline A transparent, biconvex structure of the EYE, enclosed in a capsule and situated behind the IRIS and in front of the vitreous humor (VITREOUS BODY). It is slightly overlapped at its margin by the ciliary processes. Adaptation by the CILIARY BODY is crucial for OCULAR ACCOMMODATION. Eye Lens,Lens, Eye,Crystalline Lens
D008051 Lipid Bilayers Layers of lipid molecules which are two molecules thick. Bilayer systems are frequently studied as models of biological membranes. Bilayers, Lipid,Bilayer, Lipid,Lipid Bilayer
D010714 Phosphatidylethanolamines Derivatives of phosphatidic acids in which the phosphoric acid is bound in ester linkage to an ethanolamine moiety. Complete hydrolysis yields 1 mole of glycerol, phosphoric acid and ethanolamine and 2 moles of fatty acids. Cephalin,Cephalins,Ethanolamine Phosphoglyceride,Ethanolamine Phosphoglycerides,Ethanolamineglycerophospholipids,Phosphoglyceride, Ethanolamine,Phosphoglycerides, Ethanolamine
D010743 Phospholipids Lipids containing one or more phosphate groups, particularly those derived from either glycerol (phosphoglycerides see GLYCEROPHOSPHOLIPIDS) or sphingosine (SPHINGOLIPIDS). They are polar lipids that are of great importance for the structure and function of cell membranes and are the most abundant of membrane lipids, although not stored in large amounts in the system. Phosphatides,Phospholipid
D002386 Cataract Partial or complete opacity on or in the lens or capsule of one or both eyes, impairing vision or causing blindness. The many kinds of cataract are classified by their morphology (size, shape, location) or etiology (cause and time of occurrence). (Dorland, 27th ed) Cataract, Membranous,Lens Opacities,Pseudoaphakia,Cataracts,Cataracts, Membranous,Lens Opacity,Membranous Cataract,Membranous Cataracts,Opacities, Lens,Opacity, Lens,Pseudoaphakias
D002462 Cell Membrane The lipid- and protein-containing, selectively permeable membrane that surrounds the cytoplasm in prokaryotic and eukaryotic cells. Plasma Membrane,Cytoplasmic Membrane,Cell Membranes,Cytoplasmic Membranes,Membrane, Cell,Membrane, Cytoplasmic,Membrane, Plasma,Membranes, Cell,Membranes, Cytoplasmic,Membranes, Plasma,Plasma Membranes
D002784 Cholesterol The principal sterol of all higher animals, distributed in body tissues, especially the brain and spinal cord, and in animal fats and oils. Epicholesterol
D004578 Electron Spin Resonance Spectroscopy A technique applicable to the wide variety of substances which exhibit paramagnetism because of the magnetic moments of unpaired electrons. The spectra are useful for detection and identification, for determination of electron structure, for study of interactions between molecules, and for measurement of nuclear spins and moments. (From McGraw-Hill Encyclopedia of Science and Technology, 7th edition) Electron nuclear double resonance (ENDOR) spectroscopy is a variant of the technique which can give enhanced resolution. Electron spin resonance analysis can now be used in vivo, including imaging applications such as MAGNETIC RESONANCE IMAGING. ENDOR,Electron Nuclear Double Resonance,Electron Paramagnetic Resonance,Paramagnetic Resonance,Electron Spin Resonance,Paramagnetic Resonance, Electron,Resonance, Electron Paramagnetic,Resonance, Electron Spin,Resonance, Paramagnetic
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D013113 Spin Labels Molecules which contain an atom or a group of atoms exhibiting an unpaired electron spin that can be detected by electron spin resonance spectroscopy and can be bonded to another molecule. (McGraw-Hill Dictionary of Chemical and Technical Terms, 4th ed) Spin Label,Label, Spin,Labels, Spin

Related Publications

Raju Timsina, and Geraline Trossi-Torres, and Matthew O'Dell, and Nawal K Khadka, and Laxman Mainali
February 2020, Current eye research,
Raju Timsina, and Geraline Trossi-Torres, and Matthew O'Dell, and Nawal K Khadka, and Laxman Mainali
January 2021, Experimental eye research,
Raju Timsina, and Geraline Trossi-Torres, and Matthew O'Dell, and Nawal K Khadka, and Laxman Mainali
January 2019, Experimental eye research,
Raju Timsina, and Geraline Trossi-Torres, and Matthew O'Dell, and Nawal K Khadka, and Laxman Mainali
January 2012, The Journal of membrane biology,
Raju Timsina, and Geraline Trossi-Torres, and Matthew O'Dell, and Nawal K Khadka, and Laxman Mainali
October 1999, The Journal of biological chemistry,
Raju Timsina, and Geraline Trossi-Torres, and Matthew O'Dell, and Nawal K Khadka, and Laxman Mainali
December 2017, Cell biochemistry and biophysics,
Raju Timsina, and Geraline Trossi-Torres, and Matthew O'Dell, and Nawal K Khadka, and Laxman Mainali
March 2017, Experimental eye research,
Raju Timsina, and Geraline Trossi-Torres, and Matthew O'Dell, and Nawal K Khadka, and Laxman Mainali
June 2021, Membranes,
Raju Timsina, and Geraline Trossi-Torres, and Matthew O'Dell, and Nawal K Khadka, and Laxman Mainali
September 2022, International journal of molecular sciences,
Raju Timsina, and Geraline Trossi-Torres, and Matthew O'Dell, and Nawal K Khadka, and Laxman Mainali
February 1980, Biochimica et biophysica acta,
Copied contents to your clipboard!