Ontogenesis of intestinal taurine transport: evidence for a beta-carrier in developing rat jejunum. 1988

M S Moyer, and A L Goodrich, and M M Rolfes, and F J Suchy
Division of Pediatric Gastroenterology and Nutrition, Children's Hospital Research Foundation, Cincinnati, Ohio 45229.

Taurine, a sulfur-containing beta-amino acid, may be conditionally essential during development. However, the existence of a carrier system for beta-amino acids has not been demonstrated in brush-border membrane vesicles (BBMV) from adult rat jejunum. We studied the uptake of [3H]taurine in BBMV prepared from the jejunum of developing and adult rats using a cation-precipitation technique. Uptake of 10 microM [3H]taurine by adult BBMV was slightly enhanced in the presence of an inwardly directed 100 mM Na+ gradient compared with a K+ gradient, and there was no intravesicular accumulation of isotope above the equilibrium concentration ("overshoot"). In contrast, taurine transport by BBMV from 10-day-old rat pups was markedly accelerated in the presence of a Na+ gradient compared with a K+ gradient and a twofold overshoot was observed. Na+-dependent taurine uptake was inhibited by the structural analogues hypotaurine and beta-alanine but not by alpha-alanine or glutamine, which are amino acids served by other transport systems. By computer analysis, Na+-dependent taurine uptake (2-1,000 microM) was saturable with an apparent Km of 74.80 +/- 11.87 microM and a Vmax of 53.55 +/- 2.76 pmol.mg protein-1.min-1. With increasing postnatal age, there was a marked decrease in the initial rate and peak intravesicular accumulation of taurine with disappearance of the overshoot by 21 days of age. We conclude 1) a Na+-dependent carrier mechanism for taurine transport is present in the brush-border membrane of suckling rat jejunum and 2) the activity of this carrier decreases after weaning.(ABSTRACT TRUNCATED AT 250 WORDS)

UI MeSH Term Description Entries
D007583 Jejunum The middle portion of the SMALL INTESTINE, between DUODENUM and ILEUM. It represents about 2/5 of the remaining portion of the small intestine below duodenum. Jejunums
D008297 Male Males
D008564 Membrane Potentials The voltage differences across a membrane. For cellular membranes they are computed by subtracting the voltage measured outside the membrane from the voltage measured inside the membrane. They result from differences of inside versus outside concentration of potassium, sodium, chloride, and other ions across cells' or ORGANELLES membranes. For excitable cells, the resting membrane potentials range between -30 and -100 millivolts. Physical, chemical, or electrical stimuli can make a membrane potential more negative (hyperpolarization), or less negative (depolarization). Resting Potentials,Transmembrane Potentials,Delta Psi,Resting Membrane Potential,Transmembrane Electrical Potential Difference,Transmembrane Potential Difference,Difference, Transmembrane Potential,Differences, Transmembrane Potential,Membrane Potential,Membrane Potential, Resting,Membrane Potentials, Resting,Potential Difference, Transmembrane,Potential Differences, Transmembrane,Potential, Membrane,Potential, Resting,Potential, Transmembrane,Potentials, Membrane,Potentials, Resting,Potentials, Transmembrane,Resting Membrane Potentials,Resting Potential,Transmembrane Potential,Transmembrane Potential Differences
D008871 Microvilli Minute projections of cell membranes which greatly increase the surface area of the cell. Brush Border,Striated Border,Border, Brush,Border, Striated,Borders, Brush,Borders, Striated,Brush Borders,Microvillus,Striated Borders
D009994 Osmolar Concentration The concentration of osmotically active particles in solution expressed in terms of osmoles of solute per liter of solution. Osmolality is expressed in terms of osmoles of solute per kilogram of solvent. Ionic Strength,Osmolality,Osmolarity,Concentration, Osmolar,Concentrations, Osmolar,Ionic Strengths,Osmolalities,Osmolar Concentrations,Osmolarities,Strength, Ionic,Strengths, Ionic
D011188 Potassium An element in the alkali group of metals with an atomic symbol K, atomic number 19, and atomic weight 39.10. It is the chief cation in the intracellular fluid of muscle and other cells. Potassium ion is a strong electrolyte that plays a significant role in the regulation of fluid volume and maintenance of the WATER-ELECTROLYTE BALANCE.
D011919 Rats, Inbred Strains Genetically identical individuals developed from brother and sister matings which have been carried out for twenty or more generations or by parent x offspring matings carried out with certain restrictions. This also includes animals with a long history of closed colony breeding. August Rats,Inbred Rat Strains,Inbred Strain of Rat,Inbred Strain of Rats,Inbred Strains of Rats,Rat, Inbred Strain,August Rat,Inbred Rat Strain,Inbred Strain Rat,Inbred Strain Rats,Inbred Strains Rat,Inbred Strains Rats,Rat Inbred Strain,Rat Inbred Strains,Rat Strain, Inbred,Rat Strains, Inbred,Rat, August,Rat, Inbred Strains,Rats Inbred Strain,Rats Inbred Strains,Rats, August,Rats, Inbred Strain,Strain Rat, Inbred,Strain Rats, Inbred,Strain, Inbred Rat,Strains, Inbred Rat
D000375 Aging The gradual irreversible changes in structure and function of an organism that occur as a result of the passage of time. Senescence,Aging, Biological,Biological Aging
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001693 Biological Transport, Active The movement of materials across cell membranes and epithelial layers against an electrochemical gradient, requiring the expenditure of metabolic energy. Active Transport,Uphill Transport,Active Biological Transport,Biologic Transport, Active,Transport, Active Biological,Active Biologic Transport,Transport, Active,Transport, Active Biologic,Transport, Uphill

Related Publications

M S Moyer, and A L Goodrich, and M M Rolfes, and F J Suchy
January 1993, Nutrition reviews,
M S Moyer, and A L Goodrich, and M M Rolfes, and F J Suchy
July 1983, The Journal of pharmacology and experimental therapeutics,
M S Moyer, and A L Goodrich, and M M Rolfes, and F J Suchy
January 1988, Gastroenterology,
M S Moyer, and A L Goodrich, and M M Rolfes, and F J Suchy
November 1985, The American journal of physiology,
M S Moyer, and A L Goodrich, and M M Rolfes, and F J Suchy
November 1997, European journal of clinical investigation,
M S Moyer, and A L Goodrich, and M M Rolfes, and F J Suchy
November 1991, The American journal of physiology,
M S Moyer, and A L Goodrich, and M M Rolfes, and F J Suchy
December 1977, The Journal of pharmacology and experimental therapeutics,
M S Moyer, and A L Goodrich, and M M Rolfes, and F J Suchy
June 1979, Biochimica et biophysica acta,
M S Moyer, and A L Goodrich, and M M Rolfes, and F J Suchy
November 1979, Gut,
M S Moyer, and A L Goodrich, and M M Rolfes, and F J Suchy
April 1993, Biochimica et biophysica acta,
Copied contents to your clipboard!