Angiotensin-II Modulates GABAergic Neurotransmission in the Mouse Substantia Nigra. 2021

Maibam R Singh, and Jozsef Vigh, and Gregory C Amberg

GABAergic projections neurons of the substantia nigra reticulata (SNr), through an extensive network of dendritic arbors and axon collaterals, provide robust inhibitory input to neighboring dopaminergic neurons in the substantia nigra compacta (SNc). Angiotensin-II (Ang-II) receptor signaling increases SNc dopaminergic neuronal sensitivity to insult, thus rendering these cells susceptible to dysfunction and destruction. However, the mechanisms by which Ang-II regulates SNc dopaminergic neuronal activity are unclear. Given the complex relationship between SN dopaminergic and GABAergic neurons, we hypothesized that Ang-II could regulate SNc dopaminergic neuronal activity directly and indirectly by modulating SNr GABAergic neurotransmission. Here, using transgenic mice, slice electrophysiology, and optogenetics, we provide evidence of an AT1 receptor-mediated signaling mechanism in SNr GABAergic neurons where Ang-II suppresses electrically-evoked neuronal output by facilitating postsynaptic GABAA receptors (GABAARs) and prolonging the action potential (AP) duration. Unexpectedly, Ang-II had no discernable effects on the electrical properties of SNc dopaminergic neurons. Also, and indicating a nonlinear relationship between electrical activity and neuronal output, following phasic photoactivation of SNr GABAergic neurons, Ang-II paradoxically enhanced the feedforward inhibitory input to SNc dopaminergic neurons. In sum, our observations describe an increasingly complex and heterogeneous response of the SN to Ang-II by revealing cell-specific responses and nonlinear effects on intranigral GABAergic neurotransmission. Our data further implicate the renin-angiotensin-system (RAS) as a functionally relevant neuromodulator in the substantia nigra, thus underscoring a need for additional inquiry.

UI MeSH Term Description Entries
D009435 Synaptic Transmission The communication from a NEURON to a target (neuron, muscle, or secretory cell) across a SYNAPSE. In chemical synaptic transmission, the presynaptic neuron releases a NEUROTRANSMITTER that diffuses across the synaptic cleft and binds to specific synaptic receptors, activating them. The activated receptors modulate specific ion channels and/or second-messenger systems in the postsynaptic cell. In electrical synaptic transmission, electrical signals are communicated as an ionic current flow across ELECTRICAL SYNAPSES. Neural Transmission,Neurotransmission,Transmission, Neural,Transmission, Synaptic
D011945 Receptors, Angiotensin Cell surface proteins that bind ANGIOTENSINS and trigger intracellular changes influencing the behavior of cells. Angiotensin Receptor,Angiotensin Receptors,Angiotensin II Receptor,Angiotensin III Receptor,Receptor, Angiotensin II,Receptor, Angiotensin III,Receptor, Angiotensin
D000200 Action Potentials Abrupt changes in the membrane potential that sweep along the CELL MEMBRANE of excitable cells in response to excitation stimuli. Spike Potentials,Nerve Impulses,Action Potential,Impulse, Nerve,Impulses, Nerve,Nerve Impulse,Potential, Action,Potential, Spike,Potentials, Action,Potentials, Spike,Spike Potential
D000804 Angiotensin II An octapeptide that is a potent but labile vasoconstrictor. It is produced from angiotensin I after the removal of two amino acids at the C-terminal by ANGIOTENSIN CONVERTING ENZYME. The amino acid in position 5 varies in different species. To block VASOCONSTRICTION and HYPERTENSION effect of angiotensin II, patients are often treated with ACE INHIBITORS or with ANGIOTENSIN II TYPE 1 RECEPTOR BLOCKERS. Angiotensin II, Ile(5)-,Angiotensin II, Val(5)-,5-L-Isoleucine Angiotensin II,ANG-(1-8)Octapeptide,Angiotensin II, Isoleucine(5)-,Angiotensin II, Valine(5)-,Angiotensin-(1-8) Octapeptide,Isoleucine(5)-Angiotensin,Isoleucyl(5)-Angiotensin II,Valyl(5)-Angiotensin II,5 L Isoleucine Angiotensin II,Angiotensin II, 5-L-Isoleucine
D000809 Angiotensins Oligopeptides which are important in the regulation of blood pressure (VASOCONSTRICTION) and fluid homeostasis via the RENIN-ANGIOTENSIN SYSTEM. These include angiotensins derived naturally from precursor ANGIOTENSINOGEN, and those synthesized. Angiotensin
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D013378 Substantia Nigra The black substance in the ventral midbrain or the nucleus of cells containing the black substance. These cells produce DOPAMINE, an important neurotransmitter in regulation of the sensorimotor system and mood. The dark colored MELANIN is a by-product of dopamine synthesis. Nigra, Substantia,Nigras, Substantia,Substantia Nigras
D051379 Mice The common name for the genus Mus. Mice, House,Mus,Mus musculus,Mice, Laboratory,Mouse,Mouse, House,Mouse, Laboratory,Mouse, Swiss,Mus domesticus,Mus musculus domesticus,Swiss Mice,House Mice,House Mouse,Laboratory Mice,Laboratory Mouse,Mice, Swiss,Swiss Mouse,domesticus, Mus musculus
D059290 Dopaminergic Neurons Neurons whose primary neurotransmitter is DOPAMINE. Dopamine Neurons,Dopamine Neuron,Dopaminergic Neuron,Neuron, Dopamine,Neuron, Dopaminergic,Neurons, Dopamine,Neurons, Dopaminergic
D059330 GABAergic Neurons Neurons whose primary neurotransmitter is GAMMA-AMINOBUTYRIC ACID. GABA Cells,GABA Neurons,Cell, GABA,Cells, GABA,GABA Cell,GABA Neuron,GABAergic Neuron,Neuron, GABA,Neuron, GABAergic,Neurons, GABA,Neurons, GABAergic

Related Publications

Maibam R Singh, and Jozsef Vigh, and Gregory C Amberg
February 1980, Nature,
Maibam R Singh, and Jozsef Vigh, and Gregory C Amberg
April 2002, Naunyn-Schmiedeberg's archives of pharmacology,
Maibam R Singh, and Jozsef Vigh, and Gregory C Amberg
June 2009, Acta pharmacologica Sinica,
Maibam R Singh, and Jozsef Vigh, and Gregory C Amberg
July 1993, Brain research,
Maibam R Singh, and Jozsef Vigh, and Gregory C Amberg
January 2007, Progress in brain research,
Maibam R Singh, and Jozsef Vigh, and Gregory C Amberg
October 1995, The Journal of pharmacology and experimental therapeutics,
Maibam R Singh, and Jozsef Vigh, and Gregory C Amberg
January 2000, Neuroscience,
Maibam R Singh, and Jozsef Vigh, and Gregory C Amberg
May 2018, Neuropharmacology,
Maibam R Singh, and Jozsef Vigh, and Gregory C Amberg
September 2004, The European journal of neuroscience,
Copied contents to your clipboard!