3,4,5,6-Tetrahydrophthalic anhydride modification of glutamate dehydrogenase: the construction and activity of heterohexamers. 1988

L I O'Connell, and E T Bell, and J E Bell
Department of Biochemistry, University of Rochester Medical Center, New York 14642.

Modification of glutamate dehydrogenase with 3,4,5,6-tetrahydrophthalic anhydride at pH 8.0 results in the progressive loss of enzymatic activity and a concomitant increase in the negative charge of the protein. Although the rate of inactivation at room temperature is too rapid to allow accurate rate constant determination, modification at 4 degrees C shows that the pseudo-first-order rate constant for inactivation appears to show a saturation effect with increasing reagent concentration, with a maximum of approximately 1 min-1. Control experiments showed that tetrahydrophthalic anhydride was hydrolyzed at a much slower rate, with a pseudo-first-order rate constant of 0.041 min-1. Protection studies indicated that inactivation was decreased by the active site ligands, NADP and 2-oxoglutarate. The extents of inactivation, whether assayed with glutamate at pH 7.0 or norvaline at pH 8.0, were the same. Changes in mobility on native gels and isoelectric point were used to follow the incorporated negative charge resulting from modification. Enzyme modified in the presence of protecting ligands (where activity is maintained) showed mobility changes which suggested that a single site of modification was protected. Modified enzyme incorporated 0.78 mol pyridoxal 5-phosphate less than native enzyme, consistent with modification of lysine-126. Enzyme modified under limiting conditions was shown to have a quaternary structure similar to that of the native enzyme, as judged by crosslinking patterns obtained with dimethylpimelimidate. The modified protein is readily resolved from unmodified protein using an NaCl double gradient elution from DEAE-Sephacel. The modification is reversed with regain of activity by incubation of the modified enzyme at low pH. We have made use of the recently demonstrated ability of guanidine hydrochloride to dissociate the hexamer of glutamate dehydrogenase into trimers that can then be reassociated to construct heterohexamers of glutamate dehydrogenase, in which one trimer of the heterohexamer contains native subunits while the other has been inactivated by the 3,4,5,6-tetrahydrophthalic anhydride modification. The heterohexamer is separated from either native or fully modified hexamers by DEAE-Sephacel chromatography. Significantly, the heterohexamer has little detectable catalytic activity, although activity is regained by reversal of the modification of the one modified trimer in the hexamer. This demonstrates that catalytic site cooperation between trimers in the hexamer of glutamate dehydrogenase is an essential component of the enzymatic activity of this enzyme.

UI MeSH Term Description Entries
D007526 Isoelectric Point The pH in solutions of proteins and related compounds at which the dipolar ions are at a maximum. Isoelectric Points,Point, Isoelectric,Points, Isoelectric
D010795 Phthalic Acids A group of compounds that has the general structure of a dicarboxylic acid-substituted benzene ring. The ortho-isomer is used in dye manufacture. (Dorland, 28th ed) Acids, Phthalic
D010796 Phthalic Anhydrides Phthalic acid anhydrides. Can be substituted on any carbon atom. Used extensively in industry and as a reagent in the acylation of amino- and hydroxyl groups. Anhydrides, Phthalic
D011487 Protein Conformation The characteristic 3-dimensional shape of a protein, including the secondary, supersecondary (motifs), tertiary (domains) and quaternary structure of the peptide chain. PROTEIN STRUCTURE, QUATERNARY describes the conformation assumed by multimeric proteins (aggregates of more than one polypeptide chain). Conformation, Protein,Conformations, Protein,Protein Conformations
D011732 Pyridoxal Phosphate This is the active form of VITAMIN B 6 serving as a coenzyme for synthesis of amino acids, neurotransmitters (serotonin, norepinephrine), sphingolipids, aminolevulinic acid. During transamination of amino acids, pyridoxal phosphate is transiently converted into pyridoxamine phosphate (PYRIDOXAMINE). Pyridoxal 5-Phosphate,Pyridoxal-P,Phosphate, Pyridoxal,Pyridoxal 5 Phosphate,Pyridoxal P
D004789 Enzyme Activation Conversion of an inactive form of an enzyme to one possessing metabolic activity. It includes 1, activation by ions (activators); 2, activation by cofactors (coenzymes); and 3, conversion of an enzyme precursor (proenzyme or zymogen) to an active enzyme. Activation, Enzyme,Activations, Enzyme,Enzyme Activations
D005969 Glutamate Dehydrogenase An enzyme that catalyzes the conversion of L-glutamate and water to 2-oxoglutarate and NH3 in the presence of NAD+. (From Enzyme Nomenclature, 1992) EC 1.4.1.2. Dehydrogenase, Glutamate

Related Publications

L I O'Connell, and E T Bell, and J E Bell
June 1978, Archives of biochemistry and biophysics,
L I O'Connell, and E T Bell, and J E Bell
July 1994, Biological & pharmaceutical bulletin,
L I O'Connell, and E T Bell, and J E Bell
July 1972, The Biochemical journal,
L I O'Connell, and E T Bell, and J E Bell
August 2015, Journal of molecular modeling,
L I O'Connell, and E T Bell, and J E Bell
February 2008, Organic & biomolecular chemistry,
L I O'Connell, and E T Bell, and J E Bell
April 1989, Scandinavian journal of work, environment & health,
L I O'Connell, and E T Bell, and J E Bell
January 1986, Advances in experimental medicine and biology,
L I O'Connell, and E T Bell, and J E Bell
August 1970, The Biochemical journal,
L I O'Connell, and E T Bell, and J E Bell
December 1963, Bollettino della Societa italiana di biologia sperimentale,
L I O'Connell, and E T Bell, and J E Bell
September 1969, The Biochemical journal,
Copied contents to your clipboard!