Halothane: inhibition and activation of rat hepatic glutathione S-transferases. 1988

K M Ivanetich, and A E Thumser, and G G Harrison
Department of Medical Biochemistry, University of Cape Town Medical School, Observatory, South Africa.

Multiple halothane anesthesias (1.25 MAC for 1 hr on 3 alternate days) of male Long-Evans rats initially decreased by up to 30% and subsequently increased to up to 185% liver cytosolic glutathione S-transferase activity toward 1-chloro-2,4-dinitrobenzene, 3,4-dichloro-1-nitrobenzene and trans-4-phenyl-3-buten-2-one and glutathione peroxidase activity. Halothane rapidly and reversibly activated hepatic cytosolic glutathione S-transferases and purified isoenzyme 1-2 but not isoenzymes 1-1 and 3-3. At high concentrations of halothane (ca. 22 mM), maximal activation was ca. 25%. Halothane, enflurane, isoflurane and methoxyflurane, but not the halothane metabolite 1-chloro-2,2-difluoroethylene, inhibited a mixture of liver cytosolic glutathione S-transferases with time (ca. 30% inhibition/15 min). The inhibition exhibited pseudo-first order kinetics (kobs = 0.13 min-1) and an I50 for halothane of greater than or equal to 15 mM. Halothane inhibited glutathione S-transferases 3-3, 3-4, and 4-4 by 50-60%, but did not affect isoenzymes 1-1 and 1-2. The ability of halothane to diminish hepatic glutathione S-transferase activity in vivo may in part reflect the time-dependent inhibition of glutathione S-transferase isoenzymes containing the 3- and 4-subunits.

UI MeSH Term Description Entries
D007527 Isoenzymes Structurally related forms of an enzyme. Each isoenzyme has the same mechanism and classification, but differs in its chemical, physical, or immunological characteristics. Alloenzyme,Allozyme,Isoenzyme,Isozyme,Isozymes,Alloenzymes,Allozymes
D008099 Liver A large lobed glandular organ in the abdomen of vertebrates that is responsible for detoxification, metabolism, synthesis and storage of various substances. Livers
D008297 Male Males
D004789 Enzyme Activation Conversion of an inactive form of an enzyme to one possessing metabolic activity. It includes 1, activation by ions (activators); 2, activation by cofactors (coenzymes); and 3, conversion of an enzyme precursor (proenzyme or zymogen) to an active enzyme. Activation, Enzyme,Activations, Enzyme,Enzyme Activations
D005982 Glutathione Transferase A transferase that catalyzes the addition of aliphatic, aromatic, or heterocyclic FREE RADICALS as well as EPOXIDES and arene oxides to GLUTATHIONE. Addition takes place at the SULFUR. It also catalyzes the reduction of polyol nitrate by glutathione to polyol and nitrite. Glutathione S-Alkyltransferase,Glutathione S-Aryltransferase,Glutathione S-Epoxidetransferase,Ligandins,S-Hydroxyalkyl Glutathione Lyase,Glutathione Organic Nitrate Ester Reductase,Glutathione S-Transferase,Glutathione S-Transferase 3,Glutathione S-Transferase A,Glutathione S-Transferase B,Glutathione S-Transferase C,Glutathione S-Transferase III,Glutathione S-Transferase P,Glutathione Transferase E,Glutathione Transferase mu,Glutathione Transferases,Heme Transfer Protein,Ligandin,Yb-Glutathione-S-Transferase,Glutathione Lyase, S-Hydroxyalkyl,Glutathione S Alkyltransferase,Glutathione S Aryltransferase,Glutathione S Epoxidetransferase,Glutathione S Transferase,Glutathione S Transferase 3,Glutathione S Transferase A,Glutathione S Transferase B,Glutathione S Transferase C,Glutathione S Transferase III,Glutathione S Transferase P,Lyase, S-Hydroxyalkyl Glutathione,P, Glutathione S-Transferase,Protein, Heme Transfer,S Hydroxyalkyl Glutathione Lyase,S-Alkyltransferase, Glutathione,S-Aryltransferase, Glutathione,S-Epoxidetransferase, Glutathione,S-Transferase 3, Glutathione,S-Transferase A, Glutathione,S-Transferase B, Glutathione,S-Transferase C, Glutathione,S-Transferase III, Glutathione,S-Transferase P, Glutathione,S-Transferase, Glutathione,Transfer Protein, Heme,Transferase E, Glutathione,Transferase mu, Glutathione,Transferase, Glutathione,Transferases, Glutathione
D006221 Halothane A nonflammable, halogenated, hydrocarbon anesthetic that provides relatively rapid induction with little or no excitement. Analgesia may not be adequate. NITROUS OXIDE is often given concomitantly. Because halothane may not produce sufficient muscle relaxation, supplemental neuromuscular blocking agents may be required. (From AMA Drug Evaluations Annual, 1994, p178) 1,1,1-Trifluoro-2-Chloro-2-Bromoethane,Fluothane,Ftorotan,Narcotan
D000758 Anesthesia A state characterized by loss of feeling or sensation. This depression of nerve function is usually the result of pharmacologic action and is induced to allow performance of surgery or other painful procedures.
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D013997 Time Factors Elements of limited time intervals, contributing to particular results or situations. Time Series,Factor, Time,Time Factor
D051381 Rats The common name for the genus Rattus. Rattus,Rats, Laboratory,Rats, Norway,Rattus norvegicus,Laboratory Rat,Laboratory Rats,Norway Rat,Norway Rats,Rat,Rat, Laboratory,Rat, Norway,norvegicus, Rattus

Related Publications

K M Ivanetich, and A E Thumser, and G G Harrison
October 1984, Toxicology letters,
K M Ivanetich, and A E Thumser, and G G Harrison
January 1991, Comparative biochemistry and physiology. B, Comparative biochemistry,
K M Ivanetich, and A E Thumser, and G G Harrison
August 1988, Biochemical pharmacology,
K M Ivanetich, and A E Thumser, and G G Harrison
August 1976, The Biochemical journal,
K M Ivanetich, and A E Thumser, and G G Harrison
May 1983, Biochemical and biophysical research communications,
K M Ivanetich, and A E Thumser, and G G Harrison
August 1994, Toxicology letters,
K M Ivanetich, and A E Thumser, and G G Harrison
December 1985, Chemical & pharmaceutical bulletin,
K M Ivanetich, and A E Thumser, and G G Harrison
January 1981, Methods in enzymology,
K M Ivanetich, and A E Thumser, and G G Harrison
August 1990, The Biochemical journal,
K M Ivanetich, and A E Thumser, and G G Harrison
September 1989, Toxicology and applied pharmacology,
Copied contents to your clipboard!