Ethanol-, fasting-, and acetone-inducible cytochromes P-450 in rat liver: regulation and characteristics of enzymes belonging to the IIB and IIE gene subfamilies. 1988

I Johansson, and G Ekström, and B Scholte, and D Puzycki, and H Jörnvall, and M Ingelman-Sundberg
Department of Physiological Chemistry, Karolinska Institute, Stockholm, Sweden.

Two major forms of hepatic microsomal cytochrome P-450 were purified from starved and acetone-treated rats. On the basis of amino acid sequence analysis, they were identified as P-450j and P-450b. Ethanol or acetone treatment of rats caused a 9-fold increase in the amount of P-450j in liver microsomes accompanied by similar increases in the rate of NADPH-dependent metabolism of carbon tetrachloride, acetone, and benzene. Immunological experiments indicated that P-450j constitutes the major catalyst of the microsomal metabolism of the latter agents and contributes by about 50% to microsomal P-450-dependent ethanol oxidation under the conditions used. The P-450j-dependent catalytic activities had a high rate of turnover. In contrast, this was not the case for the immunodetectable P-450j, indicating the occurrence of inactive forms of this protein in microsomes. Starvation or ethanol or acetone treatment caused 10-30-fold increases in the amount of both mRNA and apoprotein of P-450b,e compared to control. Run-on experiments and the concomitant increases of the P-450b,e gene products at the mRNA and protein levels indicated the appearance of mainly a transcriptional activation by acetone, ethanol, or starvation. Fasting exerted, in addition, a pronounced synergistic effect on acetone-dependent induction of P-450b,e mRNA (3-fold), apo-P-450b,e (4.3-fold), P-450j mRNA (2-fold), and apo-P-450j (2-fold). No increase of mRNA coding for P-450j, compared to control, was seen after acetone or ethanol treatment alone. The results indicate that effects of ethanol, acetone, and/or starvation on drug and xenobiotic metabolism are caused by the induction of P-450 forms belonging to at least two gene subfamilies.

UI MeSH Term Description Entries
D007527 Isoenzymes Structurally related forms of an enzyme. Each isoenzyme has the same mechanism and classification, but differs in its chemical, physical, or immunological characteristics. Alloenzyme,Allozyme,Isoenzyme,Isozyme,Isozymes,Alloenzymes,Allozymes
D007700 Kinetics The rate dynamics in chemical or physical systems.
D008297 Male Males
D008862 Microsomes, Liver Closed vesicles of fragmented endoplasmic reticulum created when liver cells or tissue are disrupted by homogenization. They may be smooth or rough. Liver Microsomes,Liver Microsome,Microsome, Liver
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D011919 Rats, Inbred Strains Genetically identical individuals developed from brother and sister matings which have been carried out for twenty or more generations or by parent x offspring matings carried out with certain restrictions. This also includes animals with a long history of closed colony breeding. August Rats,Inbred Rat Strains,Inbred Strain of Rat,Inbred Strain of Rats,Inbred Strains of Rats,Rat, Inbred Strain,August Rat,Inbred Rat Strain,Inbred Strain Rat,Inbred Strain Rats,Inbred Strains Rat,Inbred Strains Rats,Rat Inbred Strain,Rat Inbred Strains,Rat Strain, Inbred,Rat Strains, Inbred,Rat, August,Rat, Inbred Strains,Rats Inbred Strain,Rats Inbred Strains,Rats, August,Rats, Inbred Strain,Strain Rat, Inbred,Strain Rats, Inbred,Strain, Inbred Rat,Strains, Inbred Rat
D003577 Cytochrome P-450 Enzyme System A superfamily of hundreds of closely related HEMEPROTEINS found throughout the phylogenetic spectrum, from animals, plants, fungi, to bacteria. They include numerous complex monooxygenases (MIXED FUNCTION OXYGENASES). In animals, these P-450 enzymes serve two major functions: (1) biosynthesis of steroids, fatty acids, and bile acids; (2) metabolism of endogenous and a wide variety of exogenous substrates, such as toxins and drugs (BIOTRANSFORMATION). They are classified, according to their sequence similarities rather than functions, into CYP gene families (>40% homology) and subfamilies (>59% homology). For example, enzymes from the CYP1, CYP2, and CYP3 gene families are responsible for most drug metabolism. Cytochrome P-450,Cytochrome P-450 Enzyme,Cytochrome P-450-Dependent Monooxygenase,P-450 Enzyme,P450 Enzyme,CYP450 Family,CYP450 Superfamily,Cytochrome P-450 Enzymes,Cytochrome P-450 Families,Cytochrome P-450 Monooxygenase,Cytochrome P-450 Oxygenase,Cytochrome P-450 Superfamily,Cytochrome P450,Cytochrome P450 Superfamily,Cytochrome p450 Families,P-450 Enzymes,P450 Enzymes,Cytochrome P 450,Cytochrome P 450 Dependent Monooxygenase,Cytochrome P 450 Enzyme,Cytochrome P 450 Enzyme System,Cytochrome P 450 Enzymes,Cytochrome P 450 Families,Cytochrome P 450 Monooxygenase,Cytochrome P 450 Oxygenase,Cytochrome P 450 Superfamily,Enzyme, Cytochrome P-450,Enzyme, P-450,Enzyme, P450,Enzymes, Cytochrome P-450,Enzymes, P-450,Enzymes, P450,Monooxygenase, Cytochrome P-450,Monooxygenase, Cytochrome P-450-Dependent,P 450 Enzyme,P 450 Enzymes,P-450 Enzyme, Cytochrome,P-450 Enzymes, Cytochrome,Superfamily, CYP450,Superfamily, Cytochrome P-450,Superfamily, Cytochrome P450
D004790 Enzyme Induction An increase in the rate of synthesis of an enzyme due to the presence of an inducer which acts to derepress the gene responsible for enzyme synthesis. Induction, Enzyme
D005215 Fasting Abstaining from FOOD. Hunger Strike,Hunger Strikes,Strike, Hunger,Strikes, Hunger
D005796 Genes A category of nucleic acid sequences that function as units of heredity and which code for the basic instructions for the development, reproduction, and maintenance of organisms. Cistron,Gene,Genetic Materials,Cistrons,Genetic Material,Material, Genetic,Materials, Genetic

Related Publications

I Johansson, and G Ekström, and B Scholte, and D Puzycki, and H Jörnvall, and M Ingelman-Sundberg
May 1988, Archives of biochemistry and biophysics,
I Johansson, and G Ekström, and B Scholte, and D Puzycki, and H Jörnvall, and M Ingelman-Sundberg
February 1986, FEBS letters,
I Johansson, and G Ekström, and B Scholte, and D Puzycki, and H Jörnvall, and M Ingelman-Sundberg
October 1988, Cancer research,
I Johansson, and G Ekström, and B Scholte, and D Puzycki, and H Jörnvall, and M Ingelman-Sundberg
January 1989, Pharmacology,
I Johansson, and G Ekström, and B Scholte, and D Puzycki, and H Jörnvall, and M Ingelman-Sundberg
April 1993, The Journal of pharmacology and experimental therapeutics,
I Johansson, and G Ekström, and B Scholte, and D Puzycki, and H Jörnvall, and M Ingelman-Sundberg
November 1988, Biochemical and biophysical research communications,
I Johansson, and G Ekström, and B Scholte, and D Puzycki, and H Jörnvall, and M Ingelman-Sundberg
September 1984, Acta pharmacologica et toxicologica,
I Johansson, and G Ekström, and B Scholte, and D Puzycki, and H Jörnvall, and M Ingelman-Sundberg
January 1986, Basic life sciences,
I Johansson, and G Ekström, and B Scholte, and D Puzycki, and H Jörnvall, and M Ingelman-Sundberg
September 1983, Archives of biochemistry and biophysics,
I Johansson, and G Ekström, and B Scholte, and D Puzycki, and H Jörnvall, and M Ingelman-Sundberg
December 1978, Life sciences,
Copied contents to your clipboard!