Differential toxicity as a result of apical and basolateral treatment of LLC-PK1 monolayers with S-(1,2,3,4,4-pentachlorobutadienyl)glutathione and N-acetyl-S-(1,2,3,4,4-pentachlorobutadienyl)-L-cysteine. 1988

J J Mertens, and J G Weijnen, and W J van Doorn, and B Spenkelink, and J H Temmink, and P J van Bladeren
Dept. of Toxicology, Agricultural University Wageningen, The Netherlands.

Monolayers of LLC-PK1 cells, a cell line with features typical of proximal tubular epithelial cells, were treated at the apical and basolateral side with S-(1,2,3,4,4-pentachlorobutadienyl)glutathione (PCBD-GSH) and N-acetyl-S-(1,2,3,4,4-pentachlorobutadienyl)-L-cysteine (PCBD-NAC). Apical treatment with PCBD-GSH (greater than 20 microM) resulted in cytotoxicity, which could be inhibited by acivicin and aminooxyacetic acid (AOAA), inhibitors of gamma-glutamyltranspeptidase (gamma GT) and beta-lyase respectively. In contrast apical treatment with PCBD-NAC was only toxic at high concentrations (greater than 850 microM), and this effect could hardly be inhibited by AOAA. Basolateral treatment of confluent LLC-PK1 monolayers, grown on porous membranes, with PCBD-GSH gave a much smaller response than apical treatment, consistent with the fact that gamma GT is predominantly present at the apical side. Basolateral treatment even with high concentrations of PCBD-NAC (1.1 mM) did not show an increase in cytotoxicity when compared to the effect after apical treatment. These results suggest the absence of an organic anion transporter, by which these conjugates in vivo are transported into the cells from the basolateral side. This supposition was substantiated in a study of transcellular transport of the model ions tetraethyl ammonium (TEA) and para-aminohippurate (PAH), in LLC-PK1 monolayers, grown as indicated above. No active PAH transport could be demonstrated, whereas an active TEA transport was present. The absence of an organic anion transporter limits the usefulness of LLC-PK1 cells for the study of nephrotoxicity of compounds, like PCBD-NAc, needing this transport to enter the cells. However, the finding of an active basolateral organic cation transporter, together with the presence of gamma GT, dipeptidase and beta-lyase, makes this system especially interesting for testing all compounds that use this transporter or these enzymes in order to elicit toxicity.

UI MeSH Term Description Entries
D007555 Isoxazoles Azoles with an OXYGEN and a NITROGEN next to each other at the 1,2 positions, in contrast to OXAZOLES that have nitrogens at the 1,3 positions. Isoxazole
D007668 Kidney Body organ that filters blood for the secretion of URINE and that regulates ion concentrations. Kidneys
D007674 Kidney Diseases Pathological processes of the KIDNEY or its component tissues. Disease, Kidney,Diseases, Kidney,Kidney Disease
D010130 p-Aminohippuric Acid The glycine amide of 4-aminobenzoic acid. Its sodium salt is used as a diagnostic aid to measure effective renal plasma flow (ERPF) and excretory capacity. 4-Aminohippuric Acid,para-Aminohippuric Acid,Aminohippurate Sodium,Aminohippuric Acid,Nephrotest,Sodium Para-Aminohippurate,p-Aminohippurate,4 Aminohippuric Acid,Para-Aminohippurate, Sodium,Sodium Para Aminohippurate,Sodium, Aminohippurate,p Aminohippurate,p Aminohippuric Acid,para Aminohippuric Acid
D002070 Butadienes Four carbon unsaturated hydrocarbons containing two double bonds. Butadiene Derivative,Butadiene Derivatives,Derivative, Butadiene,Derivatives, Butadiene
D002352 Carrier Proteins Proteins that bind or transport specific substances in the blood, within the cell, or across cell membranes. Binding Proteins,Carrier Protein,Transport Protein,Transport Proteins,Binding Protein,Protein, Carrier,Proteins, Carrier
D002412 Cations Positively charged atoms, radicals or groups of atoms which travel to the cathode or negative pole during electrolysis. Cation
D002460 Cell Line Established cell cultures that have the potential to propagate indefinitely. Cell Lines,Line, Cell,Lines, Cell
D002470 Cell Survival The span of viability of a cell characterized by the capacity to perform certain functions such as metabolism, growth, reproduction, some form of responsiveness, and adaptability. Cell Viability,Cell Viabilities,Survival, Cell,Viabilities, Cell,Viability, Cell
D004847 Epithelial Cells Cells that line the inner and outer surfaces of the body by forming cellular layers (EPITHELIUM) or masses. Epithelial cells lining the SKIN; the MOUTH; the NOSE; and the ANAL CANAL derive from ectoderm; those lining the RESPIRATORY SYSTEM and the DIGESTIVE SYSTEM derive from endoderm; others (CARDIOVASCULAR SYSTEM and LYMPHATIC SYSTEM) derive from mesoderm. Epithelial cells can be classified mainly by cell shape and function into squamous, glandular and transitional epithelial cells. Adenomatous Epithelial Cells,Columnar Glandular Epithelial Cells,Cuboidal Glandular Epithelial Cells,Glandular Epithelial Cells,Squamous Cells,Squamous Epithelial Cells,Transitional Epithelial Cells,Adenomatous Epithelial Cell,Cell, Adenomatous Epithelial,Cell, Epithelial,Cell, Glandular Epithelial,Cell, Squamous,Cell, Squamous Epithelial,Cell, Transitional Epithelial,Cells, Adenomatous Epithelial,Cells, Epithelial,Cells, Glandular Epithelial,Cells, Squamous,Cells, Squamous Epithelial,Cells, Transitional Epithelial,Epithelial Cell,Epithelial Cell, Adenomatous,Epithelial Cell, Glandular,Epithelial Cell, Squamous,Epithelial Cell, Transitional,Epithelial Cells, Adenomatous,Epithelial Cells, Glandular,Epithelial Cells, Squamous,Epithelial Cells, Transitional,Glandular Epithelial Cell,Squamous Cell,Squamous Epithelial Cell,Transitional Epithelial Cell

Related Publications

J J Mertens, and J G Weijnen, and W J van Doorn, and B Spenkelink, and J H Temmink, and P J van Bladeren
January 1990, Chemico-biological interactions,
J J Mertens, and J G Weijnen, and W J van Doorn, and B Spenkelink, and J H Temmink, and P J van Bladeren
January 1995, Chemical research in toxicology,
J J Mertens, and J G Weijnen, and W J van Doorn, and B Spenkelink, and J H Temmink, and P J van Bladeren
January 1991, Drug metabolism and disposition: the biological fate of chemicals,
J J Mertens, and J G Weijnen, and W J van Doorn, and B Spenkelink, and J H Temmink, and P J van Bladeren
November 1993, The American journal of physiology,
J J Mertens, and J G Weijnen, and W J van Doorn, and B Spenkelink, and J H Temmink, and P J van Bladeren
January 1988, Toxicology in vitro : an international journal published in association with BIBRA,
J J Mertens, and J G Weijnen, and W J van Doorn, and B Spenkelink, and J H Temmink, and P J van Bladeren
June 1987, Journal of cellular physiology,
J J Mertens, and J G Weijnen, and W J van Doorn, and B Spenkelink, and J H Temmink, and P J van Bladeren
November 1987, Archives of biochemistry and biophysics,
J J Mertens, and J G Weijnen, and W J van Doorn, and B Spenkelink, and J H Temmink, and P J van Bladeren
February 1998, The American journal of physiology,
J J Mertens, and J G Weijnen, and W J van Doorn, and B Spenkelink, and J H Temmink, and P J van Bladeren
June 1991, The American journal of physiology,
J J Mertens, and J G Weijnen, and W J van Doorn, and B Spenkelink, and J H Temmink, and P J van Bladeren
July 1998, Chemical research in toxicology,
Copied contents to your clipboard!