L-Histidine production by histidase-less regulatory mutants of Serratia marcescens constructed by transduction. 1977

M Kisumi, and N Nakanishi, and T Takagi, and I Chibata

2-Methylhistidine (2MH) and 1,2,4-triazole-3-alanine (TRA) inhibited the growth of Serratia marcescens. These inhibitory effects were counteracted by L-histidine. Enzymatic studies showed that 2MH acts as a false feedback inhibitor and TRA acts as both a false feedback inhibitor and a repressor. Mutants resistant to each analog were isolated from a histidase-less mutant, because the wild-type strain possesses a potent histidase activity. 2MH-resistant mutants had a feedback-insensitive phosphoribosyltransferase, but they produced only small amounts of L-histidine. TRA-resistant mutants were divided into two types according to their histidine productivity. A mutant of one type produced about 8 mg of L-histidine per ml and had about a 10-fold increase in the enzyme levels of histidine biosynthesis. Moreover, this mutant had a partially feedback-insensitive phosphoribosyltransferase. A mutant of the second type produced only a small amount of L-histidine and had only derepressed enzyme levels. Accordingly, strains possessing the genetic alterations in both 2MH- and TRA-resistant mutants were constructed by PS20-mediated transduction. They had both feedback-insensitive phosphoribosyltransferase and derepressed enzyme levels. The representative strain HT-2604 produced about 17 mg of L-histidine per ml.

UI MeSH Term Description Entries
D008762 Methylhistidines Histidine substituted in any position with one or more methyl groups. Methylhistidine
D009154 Mutation Any detectable and heritable change in the genetic material that causes a change in the GENOTYPE and which is transmitted to daughter cells and to succeeding generations. Mutations
D010770 Phosphotransferases A rather large group of enzymes comprising not only those transferring phosphate but also diphosphate, nucleotidyl residues, and others. These have also been subdivided according to the acceptor group. (From Enzyme Nomenclature, 1992) EC 2.7. Kinases,Phosphotransferase,Phosphotransferases, ATP,Transphosphorylase,Transphosphorylases,Kinase,ATP Phosphotransferases
D004352 Drug Resistance, Microbial The ability of microorganisms, especially bacteria, to resist or to become tolerant to chemotherapeutic agents, antimicrobial agents, or antibiotics. This resistance may be acquired through gene mutation or foreign DNA in transmissible plasmids (R FACTORS). Antibiotic Resistance,Antibiotic Resistance, Microbial,Antimicrobial Resistance, Drug,Antimicrobial Drug Resistance,Antimicrobial Drug Resistances,Antimicrobial Resistances, Drug,Drug Antimicrobial Resistance,Drug Antimicrobial Resistances,Drug Resistances, Microbial,Resistance, Antibiotic,Resistance, Drug Antimicrobial,Resistances, Drug Antimicrobial
D005285 Fermentation Anaerobic degradation of GLUCOSE or other organic nutrients to gain energy in the form of ATP. End products vary depending on organisms, substrates, and enzymatic pathways. Common fermentation products include ETHANOL and LACTIC ACID. Fermentations
D006638 Histidine Ammonia-Lyase An enzyme that catalyzes the first step of histidine catabolism, forming UROCANIC ACID and AMMONIA from HISTIDINE. Deficiency of this enzyme is associated with elevated levels of serum histidine and is called histidinemia (AMINO ACID METABOLISM, INBORN ERRORS). Histidase,Histidinase,Histidine Deaminase,Histidine alpha-Deaminase,Ammonia-Lyase, Histidine,Deaminase, Histidine,Histidine Ammonia Lyase,Histidine alpha Deaminase,alpha-Deaminase, Histidine
D006639 Histidine An essential amino acid that is required for the production of HISTAMINE. Histidine, L-isomer,L-Histidine,Histidine, L isomer,L-isomer Histidine
D012706 Serratia marcescens A species of gram-negative, facultatively anaerobic, rod-shaped bacteria found in soil, water, food, and clinical specimens. It is a prominent opportunistic pathogen for hospitalized patients.
D013237 Stereoisomerism The phenomenon whereby compounds whose molecules have the same number and kind of atoms and the same atomic arrangement, but differ in their spatial relationships. (From McGraw-Hill Dictionary of Scientific and Technical Terms, 5th ed) Molecular Stereochemistry,Stereoisomers,Stereochemistry, Molecular,Stereoisomer
D014161 Transduction, Genetic The transfer of bacterial DNA by phages from an infected bacterium to another bacterium. This also refers to the transfer of genes into eukaryotic cells by viruses. This naturally occurring process is routinely employed as a GENE TRANSFER TECHNIQUE. Genetic Transduction,Genetic Transductions,Transductions, Genetic

Related Publications

M Kisumi, and N Nakanishi, and T Takagi, and I Chibata
May 1978, Applied and environmental microbiology,
M Kisumi, and N Nakanishi, and T Takagi, and I Chibata
January 1977, The Journal of antibiotics,
M Kisumi, and N Nakanishi, and T Takagi, and I Chibata
May 1983, Applied and environmental microbiology,
M Kisumi, and N Nakanishi, and T Takagi, and I Chibata
December 1995, Journal of bacteriology,
M Kisumi, and N Nakanishi, and T Takagi, and I Chibata
April 1998, Journal of bacteriology,
M Kisumi, and N Nakanishi, and T Takagi, and I Chibata
January 1973, Zeitschrift fur allgemeine Mikrobiologie,
M Kisumi, and N Nakanishi, and T Takagi, and I Chibata
March 1992, Molecular microbiology,
M Kisumi, and N Nakanishi, and T Takagi, and I Chibata
October 1969, Applied microbiology,
M Kisumi, and N Nakanishi, and T Takagi, and I Chibata
May 1972, Journal of bacteriology,
M Kisumi, and N Nakanishi, and T Takagi, and I Chibata
May 1976, Journal of biochemistry,
Copied contents to your clipboard!