Brain levels of NADH and NAD+ under hypoxic and hypoglycaemic conditions in vitro. 1988

O Garofalo, and D W Cox, and H S Bachelard
Division of Biochemistry, U.M.D.S. (St. Thomas's), London, England.

The effects of hypoxia and hypoglycaemia on the redox state in vitro have been studied. NADH and NAD+ were extracted simultaneously from superfused cerebral cortex slices and assayed by bioluminescence. The results show a nonsignificant increase in NADH and the redox ratio in "mild hypoxia," whereas "severe hypoxia" produced an increase of over 200% in NADH and in the NADH/NAD+ ratio. When the glucose in the incubation medium was reduced from its control value of 10 mM to 0.5 mM, significant decreases in NADH and the redox ratio to 60% of control value were observed. Further decreasing the glucose to 0.2 mM gave lower levels of NADH and the redox ratio (40% of control). The effects on the redox state of alternative substrates to glucose were also tested. Replacement of glucose by 10 mM pyruvate decreased the NADH by 77% and the NADH/NAD+ ratio by 79%. Replacement of glucose with 10 mM lactate gave decreases of 70% and 71%, respectively, whereas in the presence of 15 mM 2-deoxyglucose and 5 mM glucose, the NADH was decreased by 56% and the ratio by 50%. The results are discussed in relation to levels of creatine phosphate and ATP, as well as evoked action potentials, observed from parallel studies.

UI MeSH Term Description Entries
D007003 Hypoglycemia A syndrome of abnormally low BLOOD GLUCOSE level. Clinical hypoglycemia has diverse etiologies. Severe hypoglycemia eventually lead to glucose deprivation of the CENTRAL NERVOUS SYSTEM resulting in HUNGER; SWEATING; PARESTHESIA; impaired mental function; SEIZURES; COMA; and even DEATH. Fasting Hypoglycemia,Postabsorptive Hypoglycemia,Postprandial Hypoglycemia,Reactive Hypoglycemia,Hypoglycemia, Fasting,Hypoglycemia, Postabsorptive,Hypoglycemia, Postprandial,Hypoglycemia, Reactive
D007773 Lactates Salts or esters of LACTIC ACID containing the general formula CH3CHOHCOOR.
D009243 NAD A coenzyme composed of ribosylnicotinamide 5'-diphosphate coupled to adenosine 5'-phosphate by pyrophosphate linkage. It is found widely in nature and is involved in numerous enzymatic reactions in which it serves as an electron carrier by being alternately oxidized (NAD+) and reduced (NADH). (Dorland, 27th ed) Coenzyme I,DPN,Diphosphopyridine Nucleotide,Nadide,Nicotinamide-Adenine Dinucleotide,Dihydronicotinamide Adenine Dinucleotide,NADH,Adenine Dinucleotide, Dihydronicotinamide,Dinucleotide, Dihydronicotinamide Adenine,Dinucleotide, Nicotinamide-Adenine,Nicotinamide Adenine Dinucleotide,Nucleotide, Diphosphopyridine
D010084 Oxidation-Reduction A chemical reaction in which an electron is transferred from one molecule to another. The electron-donating molecule is the reducing agent or reductant; the electron-accepting molecule is the oxidizing agent or oxidant. Reducing and oxidizing agents function as conjugate reductant-oxidant pairs or redox pairs (Lehninger, Principles of Biochemistry, 1982, p471). Redox,Oxidation Reduction
D010100 Oxygen An element with atomic symbol O, atomic number 8, and atomic weight [15.99903; 15.99977]. It is the most abundant element on earth and essential for respiration. Dioxygen,Oxygen-16,Oxygen 16
D010725 Phosphocreatine An endogenous substance found mainly in skeletal muscle of vertebrates. It has been tried in the treatment of cardiac disorders and has been added to cardioplegic solutions. (Reynolds JEF(Ed): Martindale: The Extra Pharmacopoeia (electronic version). Micromedex, Inc, Englewood, CO, 1996) Creatine Phosphate,Neoton,Phosphocreatine, Disodium Salt,Phosphorylcreatine,Disodium Salt Phosphocreatine,Phosphate, Creatine
D011773 Pyruvates Derivatives of PYRUVIC ACID, including its salts and esters.
D001921 Brain The part of CENTRAL NERVOUS SYSTEM that is contained within the skull (CRANIUM). Arising from the NEURAL TUBE, the embryonic brain is comprised of three major parts including PROSENCEPHALON (the forebrain); MESENCEPHALON (the midbrain); and RHOMBENCEPHALON (the hindbrain). The developed brain consists of CEREBRUM; CEREBELLUM; and other structures in the BRAIN STEM. Encephalon
D002534 Hypoxia, Brain A reduction in brain oxygen supply due to ANOXEMIA (a reduced amount of oxygen being carried in the blood by HEMOGLOBIN), or to a restriction of the blood supply to the brain, or both. Severe hypoxia is referred to as anoxia and is a relatively common cause of injury to the central nervous system. Prolonged brain anoxia may lead to BRAIN DEATH or a PERSISTENT VEGETATIVE STATE. Histologically, this condition is characterized by neuronal loss which is most prominent in the HIPPOCAMPUS; GLOBUS PALLIDUS; CEREBELLUM; and inferior olives. Anoxia, Brain,Anoxic Encephalopathy,Brain Hypoxia,Cerebral Anoxia,Encephalopathy, Hypoxic,Hypoxic Encephalopathy,Anoxia, Cerebral,Anoxic Brain Damage,Brain Anoxia,Cerebral Hypoxia,Hypoxia, Cerebral,Hypoxic Brain Damage,Anoxic Encephalopathies,Brain Damage, Anoxic,Brain Damage, Hypoxic,Damage, Anoxic Brain,Damage, Hypoxic Brain,Encephalopathies, Anoxic,Encephalopathies, Hypoxic,Encephalopathy, Anoxic,Hypoxic Encephalopathies
D005260 Female Females

Related Publications

O Garofalo, and D W Cox, and H S Bachelard
January 2008, Frontiers in bioscience : a journal and virtual library,
O Garofalo, and D W Cox, and H S Bachelard
January 2007, Frontiers in bioscience : a journal and virtual library,
O Garofalo, and D W Cox, and H S Bachelard
July 1974, The Journal of biological chemistry,
O Garofalo, and D W Cox, and H S Bachelard
January 1982, Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism,
O Garofalo, and D W Cox, and H S Bachelard
March 1970, Hoppe-Seyler's Zeitschrift fur physiologische Chemie,
O Garofalo, and D W Cox, and H S Bachelard
April 2001, Journal of neuroscience research,
O Garofalo, and D W Cox, and H S Bachelard
July 1988, Journal of neuroscience methods,
Copied contents to your clipboard!