Transport of digoxin into brain microvessels and choroid plexuses isolated from guinea pig. 1988

A Kurihara, and H Suzuki, and Y Sawada, and Y Sugiyama, and T Iga, and M Hanano
Faculty of Pharmaceutical Sciences, University of Tokyo, Japan.

To characterize the efflux system of digoxin, a cardiac glycoside, from the brain to the blood through the blood-brain barrier and blood-cerebrospinal fluid (CSF) barrier, the accumulation of digoxin by the brain microvessel or the choroid plexus isolated from guinea pig brain was investigated. The accumulation of digoxin by the brain microvessel has a saturable component (Km = 0.163 microM, Vmax = 0.142 nmol/mL of tissue/min), with a nonsaturable component [Kd = 0.203 cell-to-medium (C:M) ratio/min] that was decreased by hypothermia (Q10 = 2.9), sulfhydryl reagent, and quinidine, but not by a metabolic inhibitor [2,4-dinitrophenol (DNP)]. It was concentration- and Na+-dependent. The accumulation of digoxin by the choroid plexus was also saturable (Km = 1.9 microM, Vmax = 3.8 nmol/mL of tissue/min), and was decreased by hypothermia (Q10 = 4.4), sulfhydryl reagents, ouabain, and quinidine, but not by metabolic inhibitors (DNP, KCN); it was also concentration- and Na+-dependent. The binding of digoxin to the homogenate of choroid plexus was one-tenth of digoxin accumulation by the intact choroid plexus, suggesting that digoxin is transported into the cells and bound to the cytosol fraction. The value of (Vmax/Km + Kd) multiplied by the total tissue weight of the microvessel per guinea pig is approximately 10-fold that of Vmax/Km multiplied by the tissue weight of the choroid plexus, although (Vmax/Km + Kd) per milliliter of the microvessel is half the Vmax/Km value of the choroid plexus. These findings suggest that digoxin can be excreted from both the brain and the cerebrospinal fluid to blood by a carrier-mediated diffusion system which is inhibited by quinidine, and that a main route of digoxin efflux from the brain to the blood is not through the blood-CSF barrier, but through the blood-brain barrier.

UI MeSH Term Description Entries
D008297 Male Males
D008833 Microcirculation The circulation of the BLOOD through the MICROVASCULAR NETWORK. Microvascular Blood Flow,Microvascular Circulation,Blood Flow, Microvascular,Circulation, Microvascular,Flow, Microvascular Blood,Microvascular Blood Flows,Microvascular Circulations
D010042 Ouabain A cardioactive glycoside consisting of rhamnose and ouabagenin, obtained from the seeds of Strophanthus gratus and other plants of the Apocynaceae; used like DIGITALIS. It is commonly used in cell biological studies as an inhibitor of the NA(+)-K(+)-EXCHANGING ATPASE. Acocantherin,G-Strophanthin,Acolongifloroside K,G Strophanthin
D011802 Quinidine An optical isomer of quinine, extracted from the bark of the CHINCHONA tree and similar plant species. This alkaloid dampens the excitability of cardiac and skeletal muscles by blocking sodium and potassium currents across cellular membranes. It prolongs cellular ACTION POTENTIALS, and decreases automaticity. Quinidine also blocks muscarinic and alpha-adrenergic neurotransmission. Adaquin,Apo-Quinidine,Chinidin,Quincardine,Quinidex,Quinidine Sulfate,Quinora,Apo Quinidine,Sulfate, Quinidine
D001921 Brain The part of CENTRAL NERVOUS SYSTEM that is contained within the skull (CRANIUM). Arising from the NEURAL TUBE, the embryonic brain is comprised of three major parts including PROSENCEPHALON (the forebrain); MESENCEPHALON (the midbrain); and RHOMBENCEPHALON (the hindbrain). The developed brain consists of CEREBRUM; CEREBELLUM; and other structures in the BRAIN STEM. Encephalon
D002831 Choroid Plexus A villous structure of tangled masses of BLOOD VESSELS contained within the third, lateral, and fourth ventricles of the BRAIN. It regulates part of the production and composition of CEREBROSPINAL FLUID. Chorioid Plexus,Plexus Choroideus,Choroideus, Plexus,Plexus, Chorioid,Plexus, Choroid
D004077 Digoxin A cardiotonic glycoside obtained mainly from Digitalis lanata; it consists of three sugars and the aglycone DIGOXIGENIN. Digoxin has positive inotropic and negative chronotropic activity. It is used to control ventricular rate in ATRIAL FIBRILLATION and in the management of congestive heart failure with atrial fibrillation. Its use in congestive heart failure and sinus rhythm is less certain. The margin between toxic and therapeutic doses is small. (From Martindale, The Extra Pharmacopoeia, 30th ed, p666) Digacin,Digitek,Digoregen,Digoxina Boehringer,Digoxine Nativelle,Dilanacin,Hemigoxine Nativelle,Lanacordin,Lanicor,Lanoxicaps,Lanoxin,Lanoxin-PG,Lenoxin,Mapluxin,Boehringer, Digoxina,Lanoxin PG,Nativelle, Digoxine,Nativelle, Hemigoxine
D006168 Guinea Pigs A common name used for the genus Cavia. The most common species is Cavia porcellus which is the domesticated guinea pig used for pets and biomedical research. Cavia,Cavia porcellus,Guinea Pig,Pig, Guinea,Pigs, Guinea
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D066298 In Vitro Techniques Methods to study reactions or processes taking place in an artificial environment outside the living organism. In Vitro Test,In Vitro Testing,In Vitro Tests,In Vitro as Topic,In Vitro,In Vitro Technique,In Vitro Testings,Technique, In Vitro,Techniques, In Vitro,Test, In Vitro,Testing, In Vitro,Testings, In Vitro,Tests, In Vitro,Vitro Testing, In

Related Publications

A Kurihara, and H Suzuki, and Y Sawada, and Y Sugiyama, and T Iga, and M Hanano
February 2004, Brain research,
A Kurihara, and H Suzuki, and Y Sawada, and Y Sugiyama, and T Iga, and M Hanano
August 1979, Journal of neurochemistry,
A Kurihara, and H Suzuki, and Y Sawada, and Y Sugiyama, and T Iga, and M Hanano
October 1979, Naunyn-Schmiedeberg's archives of pharmacology,
A Kurihara, and H Suzuki, and Y Sawada, and Y Sugiyama, and T Iga, and M Hanano
March 2004, The Journal of pharmacology and experimental therapeutics,
A Kurihara, and H Suzuki, and Y Sawada, and Y Sugiyama, and T Iga, and M Hanano
February 1981, Journal of neurochemistry,
A Kurihara, and H Suzuki, and Y Sawada, and Y Sugiyama, and T Iga, and M Hanano
December 1979, European journal of pharmacology,
A Kurihara, and H Suzuki, and Y Sawada, and Y Sugiyama, and T Iga, and M Hanano
January 1960, The American journal of physiology,
A Kurihara, and H Suzuki, and Y Sawada, and Y Sugiyama, and T Iga, and M Hanano
January 2003, Methods in molecular medicine,
A Kurihara, and H Suzuki, and Y Sawada, and Y Sugiyama, and T Iga, and M Hanano
July 1991, Experimental physiology,
A Kurihara, and H Suzuki, and Y Sawada, and Y Sugiyama, and T Iga, and M Hanano
February 1968, The Journal of pharmacology and experimental therapeutics,
Copied contents to your clipboard!