Structural organization of the mouse aspartate aminotransferase isoenzyme genes. Introns antedate the divergence of cytosolic and mitochondrial isoenzyme genes. 1988

K Obaru, and T Tsuzuki, and C Setoyama, and K Shimada
Department of Biochemistry, Kumamoto University Medical School, Japan.

We have cloned and characterized a mouse cytosolic aspartate aminotransferase (AspAT) (EC 2.6.1.1) gene, which is about 32,000 base-pairs long and is interrupted by eight introns. The 5' and 3'-flanking regions, and the exact sizes and boundaries of the exon blocks, including the transcription-initiation sites, were determined. The 5' end of the gene lacks the TATA and CAAT boxes characteristic of eukaryotic promoters, but contains G + C-rich sequences, three putative binding sites for a cellular transcription factor, Sp1, and multiple transcription-initiation sites. The sequences around the transcription-initiation sites are compatible with the formation of a number of potentially stable stem-loop structures. We compared the structural organization of the mouse cytosolic AspAT gene with that of the mouse mitochondrial AspAT gene, which has nine introns. We found that the promoter regions share a high level of homology and five of the introns are at identical places. This close matching leads to the tentative conclusion that the introns were in place before the divergence of cytosolic and mitochondrial isoenzyme genes.

UI MeSH Term Description Entries
D007438 Introns Sequences of DNA in the genes that are located between the EXONS. They are transcribed along with the exons but are removed from the primary gene transcript by RNA SPLICING to leave mature RNA. Some introns code for separate genes. Intervening Sequences,Sequences, Intervening,Intervening Sequence,Intron,Sequence, Intervening
D007527 Isoenzymes Structurally related forms of an enzyme. Each isoenzyme has the same mechanism and classification, but differs in its chemical, physical, or immunological characteristics. Alloenzyme,Allozyme,Isoenzyme,Isozyme,Isozymes,Alloenzymes,Allozymes
D008928 Mitochondria Semiautonomous, self-reproducing organelles that occur in the cytoplasm of all cells of most, but not all, eukaryotes. Each mitochondrion is surrounded by a double limiting membrane. The inner membrane is highly invaginated, and its projections are called cristae. Mitochondria are the sites of the reactions of oxidative phosphorylation, which result in the formation of ATP. They contain distinctive RIBOSOMES, transfer RNAs (RNA, TRANSFER); AMINO ACYL T RNA SYNTHETASES; and elongation and termination factors. Mitochondria depend upon genes within the nucleus of the cells in which they reside for many essential messenger RNAs (RNA, MESSENGER). Mitochondria are believed to have arisen from aerobic bacteria that established a symbiotic relationship with primitive protoeukaryotes. (King & Stansfield, A Dictionary of Genetics, 4th ed) Mitochondrial Contraction,Mitochondrion,Contraction, Mitochondrial,Contractions, Mitochondrial,Mitochondrial Contractions
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D009690 Nucleic Acid Conformation The spatial arrangement of the atoms of a nucleic acid or polynucleotide that results in its characteristic 3-dimensional shape. DNA Conformation,RNA Conformation,Conformation, DNA,Conformation, Nucleic Acid,Conformation, RNA,Conformations, DNA,Conformations, Nucleic Acid,Conformations, RNA,DNA Conformations,Nucleic Acid Conformations,RNA Conformations
D003600 Cytosol Intracellular fluid from the cytoplasm after removal of ORGANELLES and other insoluble cytoplasmic components. Cytosols
D004247 DNA A deoxyribonucleotide polymer that is the primary genetic material of all cells. Eukaryotic and prokaryotic organisms normally contain DNA in a double-stranded state, yet several important biological processes transiently involve single-stranded regions. DNA, which consists of a polysugar-phosphate backbone possessing projections of purines (adenine and guanine) and pyrimidines (thymine and cytosine), forms a double helix that is held together by hydrogen bonds between these purines and pyrimidines (adenine to thymine and guanine to cytosine). DNA, Double-Stranded,Deoxyribonucleic Acid,ds-DNA,DNA, Double Stranded,Double-Stranded DNA,ds DNA
D005091 Exons The parts of a transcript of a split GENE remaining after the INTRONS are removed. They are spliced together to become a MESSENGER RNA or other functional RNA. Mini-Exon,Exon,Mini Exon,Mini-Exons
D005796 Genes A category of nucleic acid sequences that function as units of heredity and which code for the basic instructions for the development, reproduction, and maintenance of organisms. Cistron,Gene,Genetic Materials,Cistrons,Genetic Material,Material, Genetic,Materials, Genetic
D000595 Amino Acid Sequence The order of amino acids as they occur in a polypeptide chain. This is referred to as the primary structure of proteins. It is of fundamental importance in determining PROTEIN CONFORMATION. Protein Structure, Primary,Amino Acid Sequences,Sequence, Amino Acid,Sequences, Amino Acid,Primary Protein Structure,Primary Protein Structures,Protein Structures, Primary,Structure, Primary Protein,Structures, Primary Protein

Related Publications

K Obaru, and T Tsuzuki, and C Setoyama, and K Shimada
January 1993, Journal of clinical laboratory analysis,
K Obaru, and T Tsuzuki, and C Setoyama, and K Shimada
April 1981, The Journal of biological chemistry,
K Obaru, and T Tsuzuki, and C Setoyama, and K Shimada
January 1990, The Journal of biological chemistry,
K Obaru, and T Tsuzuki, and C Setoyama, and K Shimada
July 1986, Cell,
K Obaru, and T Tsuzuki, and C Setoyama, and K Shimada
December 1976, Vnitrni lekarstvi,
K Obaru, and T Tsuzuki, and C Setoyama, and K Shimada
September 1978, Nature,
K Obaru, and T Tsuzuki, and C Setoyama, and K Shimada
August 1990, European journal of biochemistry,
Copied contents to your clipboard!