Redox-Linked Coordination Chemistry Directs Vitamin B12 Trafficking. 2021

Ruma Banerjee, and Harsha Gouda, and Shubhadra Pillay
Department of Biological Chemistry, Michigan Medicine, University of Michigan, Ann Arbor, Michigan 48109, United States.

Metals are partners for an estimated one-third of the proteome and vary in complexity from mononuclear centers to organometallic cofactors. Vitamin B12 or cobalamin represents the epitome of this complexity and is the product of an assembly line comprising some 30 enzymes. Unable to biosynthesize cobalamin, mammals rely on dietary provision of this essential cofactor, which is needed by just two enzymes, one each in the cytoplasm (methionine synthase) and the mitochondrion (methylmalonyl-CoA mutase). Brilliant clinical genetics studies on patients with inborn errors of cobalamin metabolism spanning several decades had identified at least seven genetic loci in addition to the two encoding B12 enzymes. While cells are known to house a cadre of chaperones dedicated to metal trafficking pathways that contain metal reactivity and confer targeting specificity, the seemingly supernumerary chaperones in the B12 pathway had raised obvious questions as to the rationale for their existence.With the discovery of the genes underlying cobalamin disorders, our laboratory has been at the forefront of ascribing functions to B12 chaperones and elucidating the intricate redox-linked coordination chemistry and protein-linked cofactor conformational dynamics that orchestrate the processing and translocation of cargo along the trafficking pathway. These studies have uncovered novel chemistry that exploits the innate chemical versatility of alkylcobalamins, i.e., the ability to form and dismantle the cobalt-carbon bond using homolytic or heterolytic chemistry. In addition, they have revealed the practical utility of the dimethylbenzimidazole tail, an appendage unique to cobalamins and absent in the structural cousins, porphyrin, chlorin, and corphin, as an instrument for facilitating cofactor transfer between active sites.In this Account, we navigate the chemistry of the B12 trafficking pathway from its point of entry into cells, through lysosomes, and into the cytoplasm, where incoming cobalamin derivatives with a diversity of upper ligands are denuded by the β-ligand transferase activity of CblC to the common cob(II)alamin intermediate. The broad reaction and lax substrate specificity of CblC also enables conversion of cyanocobalamin (technically, vitamin B12, i.e., the form of the cofactor in one-a-day supplements), to cob(II)alamin. CblD then hitches up with CblC via a unique Co-sulfur bond to cob(II)alamin at a bifurcation point, leading to the cytoplasmic methylcobalamin or mitochondrial 5'-deoxyadenosylcobalamin branch. Mutations at loci upstream of the junction point typically affect both branches, leading to homocystinuria and methylmalonic aciduria, whereas mutations in downstream loci lead to one or the other disease. Elucidation of the biochemical penalties associated with individual mutations is providing molecular insights into the clinical data and, in some instances, identifying which cobalamin derivative(s) might be therapeutically beneficial.Our studies on B12 trafficking are revealing strategies for cofactor sequestration and mobilization from low- to high-affinity and low- to high-coordination-number sites, which in turn are regulated by protein dynamics that constructs ergonomic cofactor binding pockets. While these B12 lessons might be broadly relevant to other metal trafficking pathways, much remains to be learned. This Account concludes by identifying some of the major gaps and challenges that are needed to complete our understanding of B12 trafficking.

UI MeSH Term Description Entries
D008247 Lysosomes A class of morphologically heterogeneous cytoplasmic particles in animal and plant tissues characterized by their content of hydrolytic enzymes and the structure-linked latency of these enzymes. The intracellular functions of lysosomes depend on their lytic potential. The single unit membrane of the lysosome acts as a barrier between the enzymes enclosed in the lysosome and the external substrate. The activity of the enzymes contained in lysosomes is limited or nil unless the vesicle in which they are enclosed is ruptured or undergoes MEMBRANE FUSION. (From Rieger et al., Glossary of Genetics: Classical and Molecular, 5th ed). Autolysosome,Autolysosomes,Lysosome
D008765 Methylmalonyl-CoA Mutase An enzyme that catalyzes the conversion of methylmalonyl-CoA to succinyl-CoA by transfer of the carbonyl group. It requires a cobamide coenzyme. A block in this enzymatic conversion leads to the metabolic disease, methylmalonic aciduria. EC 5.4.99.2. Methylmalonyl-CoA Isomerase,Isomerase, Methylmalonyl-CoA,Methylmalonyl CoA Isomerase,Methylmalonyl CoA Mutase,Mutase, Methylmalonyl-CoA
D008780 Methyltransferases A subclass of enzymes of the transferase class that catalyze the transfer of a methyl group from one compound to another. (Dorland, 28th ed) EC 2.1.1. Methyltransferase
D008928 Mitochondria Semiautonomous, self-reproducing organelles that occur in the cytoplasm of all cells of most, but not all, eukaryotes. Each mitochondrion is surrounded by a double limiting membrane. The inner membrane is highly invaginated, and its projections are called cristae. Mitochondria are the sites of the reactions of oxidative phosphorylation, which result in the formation of ATP. They contain distinctive RIBOSOMES, transfer RNAs (RNA, TRANSFER); AMINO ACYL T RNA SYNTHETASES; and elongation and termination factors. Mitochondria depend upon genes within the nucleus of the cells in which they reside for many essential messenger RNAs (RNA, MESSENGER). Mitochondria are believed to have arisen from aerobic bacteria that established a symbiotic relationship with primitive protoeukaryotes. (King & Stansfield, A Dictionary of Genetics, 4th ed) Mitochondrial Contraction,Mitochondrion,Contraction, Mitochondrial,Contractions, Mitochondrial,Mitochondrial Contractions
D010084 Oxidation-Reduction A chemical reaction in which an electron is transferred from one molecule to another. The electron-donating molecule is the reducing agent or reductant; the electron-accepting molecule is the oxidizing agent or oxidant. Reducing and oxidizing agents function as conjugate reductant-oxidant pairs or redox pairs (Lehninger, Principles of Biochemistry, 1982, p471). Redox,Oxidation Reduction
D003035 Cobalt A trace element that is a component of vitamin B12. It has the atomic symbol Co, atomic number 27, and atomic weight 58.93. It is used in nuclear weapons, alloys, and pigments. Deficiency in animals leads to anemia; its excess in humans can lead to erythrocytosis. Cobalt-59,Cobalt 59
D003038 Cobamides Deoxyadenosinecobalamins,Vitamin B 12 Coenzymes,Vitamin B12 Coenzymes,B12 Coenzymes, Vitamin,Coenzymes, Vitamin B12
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D014805 Vitamin B 12 A cobalt-containing coordination compound produced by intestinal micro-organisms and found also in soil and water. Higher plants do not concentrate vitamin B 12 from the soil and so are a poor source of the substance as compared with animal tissues. INTRINSIC FACTOR is important for the assimilation of vitamin B 12. Cobalamin,Cyanocobalamin,Cobalamins,Eritron,Vitamin B12,B 12, Vitamin,B12, Vitamin
D017434 Protein Structure, Tertiary The level of protein structure in which combinations of secondary protein structures (ALPHA HELICES; BETA SHEETS; loop regions, and AMINO ACID MOTIFS) pack together to form folded shapes. Disulfide bridges between cysteines in two different parts of the polypeptide chain along with other interactions between the chains play a role in the formation and stabilization of tertiary structure. Tertiary Protein Structure,Protein Structures, Tertiary,Tertiary Protein Structures

Related Publications

Ruma Banerjee, and Harsha Gouda, and Shubhadra Pillay
June 2017, The Journal of biological chemistry,
Ruma Banerjee, and Harsha Gouda, and Shubhadra Pillay
January 1954, Vitamins and hormones,
Ruma Banerjee, and Harsha Gouda, and Shubhadra Pillay
January 1957, Vitamins and hormones,
Ruma Banerjee, and Harsha Gouda, and Shubhadra Pillay
July 2010, Angewandte Chemie (International ed. in English),
Ruma Banerjee, and Harsha Gouda, and Shubhadra Pillay
August 2005, Biochemical Society transactions,
Ruma Banerjee, and Harsha Gouda, and Shubhadra Pillay
January 1985, Advances in clinical chemistry,
Ruma Banerjee, and Harsha Gouda, and Shubhadra Pillay
July 1950, Proceedings of the Royal Society of Medicine,
Ruma Banerjee, and Harsha Gouda, and Shubhadra Pillay
June 2005, Chemical reviews,
Ruma Banerjee, and Harsha Gouda, and Shubhadra Pillay
February 1955, The Biochemical journal,
Ruma Banerjee, and Harsha Gouda, and Shubhadra Pillay
September 1950, Science (New York, N.Y.),
Copied contents to your clipboard!