Photoinactivation of Staphylococci with 405 nm Light in a Trachea Model with Saliva Substitute at 37 °C. 2021

Tobias Meurle, and Johannes Knaus, and Agustin Barbano, and Katharina Hoenes, and Barbara Spellerberg, and Martin Hessling
Institute of Medical Engineering and Mechatronics, Ulm University of Applied Sciences, 89081 Ulm, Germany.

The globally observed rise in bacterial resistance against antibiotics has increased the need for alternatives to antibiotic treatments. The most prominent and important pathogen bacteria are the ESKAPE pathogens, which include among others Staphylococcus aureus, Klebsiella pneumoniae and Acinetobacter baumannii. These species cause ventilator-associated pneumonia (VAP), which accounts for 24% of all nosocomial infections. In this study we tested the efficacy of photoinactivation with 405 nm violet light under conditions comparable to an intubated patient with artificial saliva for bacterial suspension at 37 °C. A technical trachea model was developed to investigate the visible light photoinactivation of Staphylococcus carnosus as a non-pathogen surrogate of the ESKAPE pathogen S. aureus (MRSA). The violet light was coupled into the tube with a fiber optic setup. The performed tests proved, that photoinactivation at 37 °C is more effective with a reduction of almost 3 log levels (99.8%) compared to 25 °C with a reduction of 1.2 log levels. The substitution of phosphate buffered saline (PBS) by artificial saliva solution slightly increased the efficiency during the experimental course. The increased efficiency might be caused by a less favorable environment for bacteria due to for example the ionic composition.

UI MeSH Term Description Entries

Related Publications

Tobias Meurle, and Johannes Knaus, and Agustin Barbano, and Katharina Hoenes, and Barbara Spellerberg, and Martin Hessling
December 2018, European journal of microbiology & immunology,
Tobias Meurle, and Johannes Knaus, and Agustin Barbano, and Katharina Hoenes, and Barbara Spellerberg, and Martin Hessling
November 2023, Journal of photochemistry and photobiology. B, Biology,
Tobias Meurle, and Johannes Knaus, and Agustin Barbano, and Katharina Hoenes, and Barbara Spellerberg, and Martin Hessling
March 2022, Optics express,
Tobias Meurle, and Johannes Knaus, and Agustin Barbano, and Katharina Hoenes, and Barbara Spellerberg, and Martin Hessling
May 2020, Photochemistry and photobiology,
Tobias Meurle, and Johannes Knaus, and Agustin Barbano, and Katharina Hoenes, and Barbara Spellerberg, and Martin Hessling
October 2023, Applied and environmental microbiology,
Tobias Meurle, and Johannes Knaus, and Agustin Barbano, and Katharina Hoenes, and Barbara Spellerberg, and Martin Hessling
January 2013, Photochemistry and photobiology,
Tobias Meurle, and Johannes Knaus, and Agustin Barbano, and Katharina Hoenes, and Barbara Spellerberg, and Martin Hessling
December 2006, Photomedicine and laser surgery,
Tobias Meurle, and Johannes Knaus, and Agustin Barbano, and Katharina Hoenes, and Barbara Spellerberg, and Martin Hessling
January 2012, Photochemistry and photobiology,
Tobias Meurle, and Johannes Knaus, and Agustin Barbano, and Katharina Hoenes, and Barbara Spellerberg, and Martin Hessling
December 2014, Letters in applied microbiology,
Tobias Meurle, and Johannes Knaus, and Agustin Barbano, and Katharina Hoenes, and Barbara Spellerberg, and Martin Hessling
March 2022, Photochemistry and photobiology,
Copied contents to your clipboard!