In vivo measurement of neuronal uptake of norepinephrine in the human heart. 1988

D S Goldstein, and J E Brush, and G Eisenhofer, and R Stull, and M Esler
Hypertension-Endocrine Branch, National Heart, Lung, and Blood Institute, Bethesda, MD 20892.

Neuronal uptake (Uptake-1) of the sympathetic neurotransmitter norepinephrine from the circulation in the human heart was assessed in vivo with three techniques. 1) Cardiac removal of intravenously infused tracer-labeled norepinephrine was measured before and after Uptake-1 blockade with desipramine; 2) the difference between the fractional extraction of radioactive norepinephrine and of radioactive isoproterenol, which is not a substrate for neuronal uptake, was used to estimate the removal of norepinephrine by Uptake-1 in the heart compared with other vascular beds (arm, leg, brain, and lungs); and 3) regional arteriovenous differences in radioactive and endogenous dihydroxyphenylglycol (DHPG), an exclusively intraneuronal metabolite of norepinephrine, were compared in these beds. In untreated patients, cardiac removal of radioactive norepinephrine averaged 79%, whereas in desipramine-treated patients, cardiac removal of radioactive norepinephrine averaged 19%, a value similar to that of isoproterenol in untreated patients (14%), confirming that in the heart the non-neuronal removals of isoproterenol and norepinephrine were similar. In the heart, 69% of delivered norepinephrine was estimated to be removed by Uptake-1, a much higher percentage than that in the arm (14%), leg (7%), brain (10%), and lungs (4%). The cardiac arteriovenous increment in endogenous DHPG (137%) far exceeded that of the other beds (49%, 26%, 39%, and -19%, respectively), and radioactive DHPG in the great cardiac vein exceeded arterial levels by 113%, whereas in the other beds, arterial radioactive DHPG exceeded venous levels. The results indicate that the human heart is exceptionally dependent on neuronal uptake for in vivo removal of circulating norepinephrine.

UI MeSH Term Description Entries
D007545 Isoproterenol Isopropyl analog of EPINEPHRINE; beta-sympathomimetic that acts on the heart, bronchi, skeletal muscle, alimentary tract, etc. It is used mainly as bronchodilator and heart stimulant. Isoprenaline,Isopropylarterenol,4-(1-Hydroxy-2-((1-methylethyl)amino)ethyl)-1,2-benzenediol,Euspiran,Isadrin,Isadrine,Isopropyl Noradrenaline,Isopropylnoradrenaline,Isopropylnorepinephrine,Isoproterenol Hydrochloride,Isoproterenol Sulfate,Isuprel,Izadrin,Norisodrine,Novodrin,Hydrochloride, Isoproterenol,Noradrenaline, Isopropyl,Sulfate, Isoproterenol
D008734 Methoxyhydroxyphenylglycol Synthesized from endogenous epinephrine and norepinephrine in vivo. It is found in brain, blood, CSF, and urine, where its concentrations are used to measure catecholamine turnover. Hydroxymethoxyphenylglycol,MHPG,MOPEG,Vanylglycol,4-Hydroxy-3-methoxyphenylethylene Glycol,4-Hydroxy-3-methoxyphenylethyleneglycol,4-Hydroxy-3-methoxyphenylglycol,Methoxyhydroxyphenylglycol, (+)-Isomer,Methoxyhydroxyphenylglycol, (+-)-Isomer,Methoxyhydroxyphenylglycol, (-)-Isomer,4 Hydroxy 3 methoxyphenylethylene Glycol,4 Hydroxy 3 methoxyphenylethyleneglycol,4 Hydroxy 3 methoxyphenylglycol
D009206 Myocardium The muscle tissue of the HEART. It is composed of striated, involuntary muscle cells (MYOCYTES, CARDIAC) connected to form the contractile pump to generate blood flow. Muscle, Cardiac,Muscle, Heart,Cardiac Muscle,Myocardia,Cardiac Muscles,Heart Muscle,Heart Muscles,Muscles, Cardiac,Muscles, Heart
D009474 Neurons The basic cellular units of nervous tissue. Each neuron consists of a body, an axon, and dendrites. Their purpose is to receive, conduct, and transmit impulses in the NERVOUS SYSTEM. Nerve Cells,Cell, Nerve,Cells, Nerve,Nerve Cell,Neuron
D009638 Norepinephrine Precursor of epinephrine that is secreted by the ADRENAL MEDULLA and is a widespread central and autonomic neurotransmitter. Norepinephrine is the principal transmitter of most postganglionic sympathetic fibers, and of the diffuse projection system in the brain that arises from the LOCUS CERULEUS. It is also found in plants and is used pharmacologically as a sympathomimetic. Levarterenol,Levonorepinephrine,Noradrenaline,Arterenol,Levonor,Levophed,Levophed Bitartrate,Noradrenaline Bitartrate,Noradrénaline tartrate renaudin,Norepinephrin d-Tartrate (1:1),Norepinephrine Bitartrate,Norepinephrine Hydrochloride,Norepinephrine Hydrochloride, (+)-Isomer,Norepinephrine Hydrochloride, (+,-)-Isomer,Norepinephrine d-Tartrate (1:1),Norepinephrine l-Tartrate (1:1),Norepinephrine l-Tartrate (1:1), (+,-)-Isomer,Norepinephrine l-Tartrate (1:1), Monohydrate,Norepinephrine l-Tartrate (1:1), Monohydrate, (+)-Isomer,Norepinephrine l-Tartrate (1:2),Norepinephrine l-Tartrate, (+)-Isomer,Norepinephrine, (+)-Isomer,Norepinephrine, (+,-)-Isomer
D003891 Desipramine A tricyclic dibenzazepine compound that potentiates neurotransmission. Desipramine selectively blocks reuptake of norepinephrine from the neural synapse, and also appears to impair serotonin transport. This compound also possesses minor anticholinergic activity, through its affinity to muscarinic receptors. Desmethylimipramine,Apo-Desipramine,Demethylimipramine,Desipramine Hydrochloride,Norpramin,Novo-Desipramine,Nu-Desipramine,PMS-Desipramine,Pertofran,Pertofrane,Pertrofran,Petylyl,Ratio-Desipramine,Apo Desipramine,Hydrochloride, Desipramine,Novo Desipramine,Nu Desipramine,PMS Desipramine,Ratio Desipramine
D006321 Heart The hollow, muscular organ that maintains the circulation of the blood. Hearts
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man

Related Publications

D S Goldstein, and J E Brush, and G Eisenhofer, and R Stull, and M Esler
December 1985, Journal of hypertension. Supplement : official journal of the International Society of Hypertension,
D S Goldstein, and J E Brush, and G Eisenhofer, and R Stull, and M Esler
April 1964, Naunyn-Schmiedebergs Archiv fur experimentelle Pathologie und Pharmakologie,
D S Goldstein, and J E Brush, and G Eisenhofer, and R Stull, and M Esler
September 1985, Life sciences,
D S Goldstein, and J E Brush, and G Eisenhofer, and R Stull, and M Esler
January 1995, Journal of the American College of Cardiology,
D S Goldstein, and J E Brush, and G Eisenhofer, and R Stull, and M Esler
January 1981, Hypertension (Dallas, Tex. : 1979),
D S Goldstein, and J E Brush, and G Eisenhofer, and R Stull, and M Esler
July 2004, American journal of physiology. Heart and circulatory physiology,
D S Goldstein, and J E Brush, and G Eisenhofer, and R Stull, and M Esler
July 1985, The Journal of clinical investigation,
D S Goldstein, and J E Brush, and G Eisenhofer, and R Stull, and M Esler
April 2022, American journal of physiology. Cell physiology,
D S Goldstein, and J E Brush, and G Eisenhofer, and R Stull, and M Esler
September 1994, Magnetic resonance in medicine,
Copied contents to your clipboard!