Dynamic analysis of CSF1R-related leukoencephalopathy on magnetic resonance imaging: a case report. 2021

Huasheng Huang, and Liming Cao, and Hong Chen
Department of Neurology, Liuzhou People's Hospital, Liuzhou, China.

BACKGROUND Colony-stimulating factor 1 receptor (CSF1R)-related leukoencephalopathy is a rare and rapidly progressive leukoencephalopathy characterized by cognitive, motor, and neuropsychiatric symptoms, which is often misdiagnosed. Magnetic resonance imaging (MRI) signs and follow-up MRI of CSF1R-related leukoencephalopathy could help in establishing a diagnosis, but these features are not widely known by general neurologists. METHODS A 34-year-old man was admitted for progressive weakness of the right limbs over 8 months. His father and sister had a similar clinical evolution. The primary neurological signs were hemiplegia, cognitive decline, dysarthria, pyramidal signs, ataxia and parkinsonism, and rapid disease progression. Cerebrospinal fluid analysis results were normal. Despite receiving treatment for improving cerebral metabolism and relieving the muscle spasm, his symptoms did not improve significantly. Brain MRI showed lesions concentrated in the corpus callosum and the deep white matter of the bilateral parieto-occipital lobes, periventricular areas, and corticospinal tracts. There was an enhanced lesion after a gadolinium-enhanced MRI scan. Over the 8-month progression, the lesions always exhibited restricted diffusion. The diffuse lesions gradually increased as the disease progressed. Genetic sequencing results showed a novel heterozygous missense mutation (c.2267 T > C p.L756P) in the CSF1R gene. The patient was treated with citicoline and idebenone for 4 days to improve cerebral metabolism, but his symptoms did not improve significantly. CONCLUSIONS The multiple lesions involving the pyramidal tract and white matter showed continuously restricted diffusion on brain imaging and gradually increased with disease progression.

UI MeSH Term Description Entries
D008279 Magnetic Resonance Imaging Non-invasive method of demonstrating internal anatomy based on the principle that atomic nuclei in a strong magnetic field absorb pulses of radiofrequency energy and emit them as radiowaves which can be reconstructed into computerized images. The concept includes proton spin tomographic techniques. Chemical Shift Imaging,MR Tomography,MRI Scans,MRI, Functional,Magnetic Resonance Image,Magnetic Resonance Imaging, Functional,Magnetization Transfer Contrast Imaging,NMR Imaging,NMR Tomography,Tomography, NMR,Tomography, Proton Spin,fMRI,Functional Magnetic Resonance Imaging,Imaging, Chemical Shift,Proton Spin Tomography,Spin Echo Imaging,Steady-State Free Precession MRI,Tomography, MR,Zeugmatography,Chemical Shift Imagings,Echo Imaging, Spin,Echo Imagings, Spin,Functional MRI,Functional MRIs,Image, Magnetic Resonance,Imaging, Magnetic Resonance,Imaging, NMR,Imaging, Spin Echo,Imagings, Chemical Shift,Imagings, Spin Echo,MRI Scan,MRIs, Functional,Magnetic Resonance Images,Resonance Image, Magnetic,Scan, MRI,Scans, MRI,Shift Imaging, Chemical,Shift Imagings, Chemical,Spin Echo Imagings,Steady State Free Precession MRI
D008297 Male Males
D009154 Mutation Any detectable and heritable change in the genetic material that causes a change in the GENOTYPE and which is transmitted to daughter cells and to succeeding generations. Mutations
D009682 Magnetic Resonance Spectroscopy Spectroscopic method of measuring the magnetic moment of elementary particles such as atomic nuclei, protons or electrons. It is employed in clinical applications such as NMR Tomography (MAGNETIC RESONANCE IMAGING). In Vivo NMR Spectroscopy,MR Spectroscopy,Magnetic Resonance,NMR Spectroscopy,NMR Spectroscopy, In Vivo,Nuclear Magnetic Resonance,Spectroscopy, Magnetic Resonance,Spectroscopy, NMR,Spectroscopy, Nuclear Magnetic Resonance,Magnetic Resonance Spectroscopies,Magnetic Resonance, Nuclear,NMR Spectroscopies,Resonance Spectroscopy, Magnetic,Resonance, Magnetic,Resonance, Nuclear Magnetic,Spectroscopies, NMR,Spectroscopy, MR
D011712 Pyramidal Tracts Fibers that arise from cells within the cerebral cortex, pass through the medullary pyramid, and descend in the spinal cord. Many authorities say the pyramidal tracts include both the corticospinal and corticobulbar tracts. Corticobulbar Tracts,Corticospinal Tracts,Decussation, Pyramidal,Corticobulbar Tract,Corticospinal Tract,Pyramidal Decussation,Pyramidal Tract,Tract, Corticobulbar,Tract, Corticospinal,Tract, Pyramidal,Tracts, Corticobulbar,Tracts, Corticospinal,Tracts, Pyramidal
D001921 Brain The part of CENTRAL NERVOUS SYSTEM that is contained within the skull (CRANIUM). Arising from the NEURAL TUBE, the embryonic brain is comprised of three major parts including PROSENCEPHALON (the forebrain); MESENCEPHALON (the midbrain); and RHOMBENCEPHALON (the hindbrain). The developed brain consists of CEREBRUM; CEREBELLUM; and other structures in the BRAIN STEM. Encephalon
D003337 Corpus Callosum Broad plate of dense myelinated fibers that reciprocally interconnect regions of the cortex in all lobes with corresponding regions of the opposite hemisphere. The corpus callosum is located deep in the longitudinal fissure. Interhemispheric Commissure,Neocortical Commissure,Callosum, Corpus,Callosums, Corpus,Commissure, Interhemispheric,Commissure, Neocortical,Commissures, Interhemispheric,Commissures, Neocortical,Corpus Callosums,Interhemispheric Commissures,Neocortical Commissures
D006579 Heterozygote An individual having different alleles at one or more loci regarding a specific character. Carriers, Genetic,Genetic Carriers,Carrier, Genetic,Genetic Carrier,Heterozygotes
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000328 Adult A person having attained full growth or maturity. Adults are of 19 through 44 years of age. For a person between 19 and 24 years of age, YOUNG ADULT is available. Adults

Related Publications

Huasheng Huang, and Liming Cao, and Hong Chen
July 2023, Journal of clinical neuroscience : official journal of the Neurosurgical Society of Australasia,
Huasheng Huang, and Liming Cao, and Hong Chen
October 2023, Acta neurologica Belgica,
Huasheng Huang, and Liming Cao, and Hong Chen
January 2021, Neurologia i neurochirurgia polska,
Huasheng Huang, and Liming Cao, and Hong Chen
June 2010, Journal of child neurology,
Huasheng Huang, and Liming Cao, and Hong Chen
January 2020, International journal of general medicine,
Huasheng Huang, and Liming Cao, and Hong Chen
July 2020, Taehan Yongsang Uihakhoe chi,
Huasheng Huang, and Liming Cao, and Hong Chen
March 2022, Journal of internal medicine,
Huasheng Huang, and Liming Cao, and Hong Chen
March 2016, Annals of neurology,
Huasheng Huang, and Liming Cao, and Hong Chen
October 2021, Neurocase,
Huasheng Huang, and Liming Cao, and Hong Chen
January 2023, Frontiers in neurology,
Copied contents to your clipboard!