In vitro packaging of a lambda Dam vector containing EcoRI DNA fragments of Escherichia coli and phage P1. 1977

N Sternberg, and D Tiemeier, and L Enquist

In this report we describe a coliphage lambda vector system for cloning endo R. EcoRI DNA fragments. This system differs significantly from those previously described in two ways. First, restricted and ligated DNA is encapsidated in vitro. Second, with increasing lambda DNA size in the range 78 to 100% that of wild-type, the efficiency of DNA encapsidation into infectious phage particles markedly increases. For lambda wild-type DNA the efficiency of in vitro packaging (10(6) to 10(7) plaques produced per microgram of added DNA) is equal to, or better than, the standard CaCl2 transfection method. The use of a Dam mutation to facilitate recognition of size classes of inserted fragments is described. Using this vector and in vitro packaging, several E. coli and phage P1 and R.EcoRI fragments were cloned.

UI MeSH Term Description Entries
D003090 Coliphages Viruses whose host is Escherichia coli. Escherichia coli Phages,Coliphage,Escherichia coli Phage,Phage, Escherichia coli,Phages, Escherichia coli
D004261 DNA Replication The process by which a DNA molecule is duplicated. Autonomous Replication,Replication, Autonomous,Autonomous Replications,DNA Replications,Replication, DNA,Replications, Autonomous,Replications, DNA
D004262 DNA Restriction Enzymes Enzymes that are part of the restriction-modification systems. They catalyze the endonucleolytic cleavage of DNA sequences which lack the species-specific methylation pattern in the host cell's DNA. Cleavage yields random or specific double-stranded fragments with terminal 5'-phosphates. The function of restriction enzymes is to destroy any foreign DNA that invades the host cell. Most have been studied in bacterial systems, but a few have been found in eukaryotic organisms. They are also used as tools for the systematic dissection and mapping of chromosomes, in the determination of base sequences of DNAs, and have made it possible to splice and recombine genes from one organism into the genome of another. EC 3.21.1. Restriction Endonucleases,DNA Restriction Enzyme,Restriction Endonuclease,Endonuclease, Restriction,Endonucleases, Restriction,Enzymes, DNA Restriction,Restriction Enzyme, DNA,Restriction Enzymes, DNA
D004269 DNA, Bacterial Deoxyribonucleic acid that makes up the genetic material of bacteria. Bacterial DNA
D004274 DNA, Recombinant Biologically active DNA which has been formed by the in vitro joining of segments of DNA from different sources. It includes the recombination joint or edge of a heteroduplex region where two recombining DNA molecules are connected. Genes, Spliced,Recombinant DNA,Spliced Gene,Recombinant DNA Research,Recombination Joint,DNA Research, Recombinant,Gene, Spliced,Joint, Recombination,Research, Recombinant DNA,Spliced Genes
D004279 DNA, Viral Deoxyribonucleic acid that makes up the genetic material of viruses. Viral DNA
D004926 Escherichia coli A species of gram-negative, facultatively anaerobic, rod-shaped bacteria (GRAM-NEGATIVE FACULTATIVELY ANAEROBIC RODS) commonly found in the lower part of the intestine of warm-blooded animals. It is usually nonpathogenic, but some strains are known to produce DIARRHEA and pyogenic infections. Pathogenic strains (virotypes) are classified by their specific pathogenic mechanisms such as toxins (ENTEROTOXIGENIC ESCHERICHIA COLI), etc. Alkalescens-Dispar Group,Bacillus coli,Bacterium coli,Bacterium coli commune,Diffusely Adherent Escherichia coli,E coli,EAggEC,Enteroaggregative Escherichia coli,Enterococcus coli,Diffusely Adherent E. coli,Enteroaggregative E. coli,Enteroinvasive E. coli,Enteroinvasive Escherichia coli
D014162 Transfection The uptake of naked or purified DNA by CELLS, usually meaning the process as it occurs in eukaryotic cells. It is analogous to bacterial transformation (TRANSFORMATION, BACTERIAL) and both are routinely employed in GENE TRANSFER TECHNIQUES. Transfections

Related Publications

N Sternberg, and D Tiemeier, and L Enquist
January 1974, Journal of supramolecular structure,
N Sternberg, and D Tiemeier, and L Enquist
January 1979, Methods in enzymology,
N Sternberg, and D Tiemeier, and L Enquist
July 1979, Virology,
N Sternberg, and D Tiemeier, and L Enquist
March 1979, Science (New York, N.Y.),
N Sternberg, and D Tiemeier, and L Enquist
November 1976, Nature,
N Sternberg, and D Tiemeier, and L Enquist
December 1988, Gene,
N Sternberg, and D Tiemeier, and L Enquist
January 1979, Cold Spring Harbor symposia on quantitative biology,
N Sternberg, and D Tiemeier, and L Enquist
December 1986, Nucleic acids research,
N Sternberg, and D Tiemeier, and L Enquist
February 1989, Gene,
N Sternberg, and D Tiemeier, and L Enquist
August 1969, Virology,
Copied contents to your clipboard!