| D008297 |
Male |
|
Males |
|
| D008810 |
Mice, Inbred C57BL |
One of the first INBRED MOUSE STRAINS to be sequenced. This strain is commonly used as genetic background for transgenic mouse models. Refractory to many tumors, this strain is also preferred model for studying role of genetic variations in development of diseases. |
Mice, C57BL,Mouse, C57BL,Mouse, Inbred C57BL,C57BL Mice,C57BL Mice, Inbred,C57BL Mouse,C57BL Mouse, Inbred,Inbred C57BL Mice,Inbred C57BL Mouse |
|
| D005260 |
Female |
|
Females |
|
| D000818 |
Animals |
Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. |
Animal,Metazoa,Animalia |
|
| D012686 |
Septal Nuclei |
Neural nuclei situated in the septal region. They have afferent and cholinergic efferent connections with a variety of FOREBRAIN and BRAIN STEM areas including the HIPPOCAMPAL FORMATION, the LATERAL HYPOTHALAMUS, the tegmentum, and the AMYGDALA. Included are the dorsal, lateral, medial, and triangular septal nuclei, septofimbrial nucleus, nucleus of diagonal band, nucleus of anterior commissure, and the nucleus of stria terminalis. |
Bed Nucleus of Stria Terminalis,Nucleus of Anterior Commissure,Nucleus of Diagonal Band,Nucleus of Stria Terminalis,Septofimbrial Nucleus,Dorsal Septal Nucleus,Lateral Septal Nucleus,Lateral Septum Nucleus,Medial Septal Nucleus,Medial Septum Nucleus,Nucleus Interstitialis Striae Terminalis,Nucleus Lateralis Septi,Nucleus Septalis Lateralis,Nucleus Septi Lateralis,Nucleus Striae Terminalis,Nucleus Triangularis Septi,Nucleus of the Stria Terminalis,Septal Nuclear Complex,Triangular Septal Nucleus,Anterior Commissure Nucleus,Complex, Septal Nuclear,Complices, Septal Nuclear,Diagonal Band Nucleus,Laterali, Nucleus Septalis,Laterali, Nucleus Septi,Lateralis Septi, Nucleus,Lateralis Septus, Nucleus,Lateralis, Nucleus Septalis,Lateralis, Nucleus Septi,Nuclear Complex, Septal,Nuclear Complices, Septal,Nuclei, Septal,Nucleus Lateralis Septus,Nucleus Septalis Laterali,Nucleus Septi Laterali,Nucleus Striae Terminali,Nucleus Triangularis Septus,Nucleus, Dorsal Septal,Nucleus, Lateral Septal,Nucleus, Lateral Septum,Nucleus, Medial Septal,Nucleus, Medial Septum,Nucleus, Septofimbrial,Nucleus, Triangular Septal,Septal Nuclear Complices,Septal Nucleus, Dorsal,Septal Nucleus, Lateral,Septal Nucleus, Medial,Septal Nucleus, Triangular,Septalis Laterali, Nucleus,Septalis Lateralis, Nucleus,Septi Laterali, Nucleus,Septi Lateralis, Nucleus,Septi, Nucleus Lateralis,Septi, Nucleus Triangularis,Septum Nucleus, Lateral,Septum Nucleus, Medial,Septus, Nucleus Lateralis,Septus, Nucleus Triangularis,Stria Terminalis Nucleus,Striae Terminali, Nucleus,Striae Terminalis, Nucleus,Terminali, Nucleus Striae,Terminalis, Nucleus Striae,Triangularis Septi, Nucleus,Triangularis Septus, Nucleus |
|
| D012727 |
Sex Characteristics |
Those characteristics that distinguish one SEX from the other. The primary sex characteristics are the OVARIES and TESTES and their related hormones. Secondary sex characteristics are those which are masculine or feminine but not directly related to reproduction. |
Gender Characteristics,Gender Differences,Gender Dimorphism,Sex Differences,Sex Dimorphism,Sexual Dichromatism,Sexual Dimorphism,Characteristic, Gender,Characteristic, Sex,Dichromatism, Sexual,Dichromatisms, Sexual,Difference, Sex,Dimorphism, Gender,Dimorphism, Sex,Dimorphism, Sexual,Gender Characteristic,Gender Difference,Gender Dimorphisms,Sex Characteristic,Sex Difference,Sex Dimorphisms,Sexual Dichromatisms,Sexual Dimorphisms |
|
| D016194 |
Receptors, N-Methyl-D-Aspartate |
A class of ionotropic glutamate receptors characterized by affinity for N-methyl-D-aspartate. NMDA receptors have an allosteric binding site for glycine which must be occupied for the channel to open efficiently and a site within the channel itself to which magnesium ions bind in a voltage-dependent manner. The positive voltage dependence of channel conductance and the high permeability of the conducting channel to calcium ions (as well as to monovalent cations) are important in excitotoxicity and neuronal plasticity. |
N-Methyl-D-Aspartate Receptor,N-Methyl-D-Aspartate Receptors,NMDA Receptor,NMDA Receptor-Ionophore Complex,NMDA Receptors,Receptors, NMDA,N-Methylaspartate Receptors,Receptors, N-Methylaspartate,N Methyl D Aspartate Receptor,N Methyl D Aspartate Receptors,N Methylaspartate Receptors,NMDA Receptor Ionophore Complex,Receptor, N-Methyl-D-Aspartate,Receptor, NMDA,Receptors, N Methyl D Aspartate,Receptors, N Methylaspartate |
|
| D051379 |
Mice |
The common name for the genus Mus. |
Mice, House,Mus,Mus musculus,Mice, Laboratory,Mouse,Mouse, House,Mouse, Laboratory,Mouse, Swiss,Mus domesticus,Mus musculus domesticus,Swiss Mice,House Mice,House Mouse,Laboratory Mice,Laboratory Mouse,Mice, Swiss,Swiss Mouse,domesticus, Mus musculus |
|
| D018408 |
Patch-Clamp Techniques |
An electrophysiologic technique for studying cells, cell membranes, and occasionally isolated organelles. All patch-clamp methods rely on a very high-resistance seal between a micropipette and a membrane; the seal is usually attained by gentle suction. The four most common variants include on-cell patch, inside-out patch, outside-out patch, and whole-cell clamp. Patch-clamp methods are commonly used to voltage clamp, that is control the voltage across the membrane and measure current flow, but current-clamp methods, in which the current is controlled and the voltage is measured, are also used. |
Patch Clamp Technique,Patch-Clamp Technic,Patch-Clamp Technique,Voltage-Clamp Technic,Voltage-Clamp Technique,Voltage-Clamp Techniques,Whole-Cell Recording,Patch-Clamp Technics,Voltage-Clamp Technics,Clamp Technique, Patch,Clamp Techniques, Patch,Patch Clamp Technic,Patch Clamp Technics,Patch Clamp Techniques,Recording, Whole-Cell,Recordings, Whole-Cell,Technic, Patch-Clamp,Technic, Voltage-Clamp,Technics, Patch-Clamp,Technics, Voltage-Clamp,Technique, Patch Clamp,Technique, Patch-Clamp,Technique, Voltage-Clamp,Techniques, Patch Clamp,Techniques, Patch-Clamp,Techniques, Voltage-Clamp,Voltage Clamp Technic,Voltage Clamp Technics,Voltage Clamp Technique,Voltage Clamp Techniques,Whole Cell Recording,Whole-Cell Recordings |
|
| D019706 |
Excitatory Postsynaptic Potentials |
Depolarization of membrane potentials at the SYNAPTIC MEMBRANES of target neurons during neurotransmission. Excitatory postsynaptic potentials can singly or in summation reach the trigger threshold for ACTION POTENTIALS. |
EPSP,End Plate Potentials,Excitatory Postsynaptic Currents,Current, Excitatory Postsynaptic,Currents, Excitatory Postsynaptic,End Plate Potential,Excitatory Postsynaptic Current,Excitatory Postsynaptic Potential,Plate Potential, End,Plate Potentials, End,Postsynaptic Current, Excitatory,Postsynaptic Currents, Excitatory,Postsynaptic Potential, Excitatory,Postsynaptic Potentials, Excitatory,Potential, End Plate,Potential, Excitatory Postsynaptic,Potentials, End Plate,Potentials, Excitatory Postsynaptic |
|