Long-term depression of excitatory transmission in the lateral septum. 2021

Chanchanok Chaichim, and Madeleine J Cannings, and Gadiel Dumlao, and John M Power
Translational Neuroscience Facility and Department of Physiology, School of Medical Sciences, UNSW Sydney, Sydney, New South Wales, Australia.

Neurons in the lateral septum (LS) integrate glutamatergic synaptic inputs, primarily from hippocampus, and send inhibitory projections to brain regions involved in reward and the generation of motivated behavior. Motivated learning and drugs of abuse have been shown to induce long-term changes in the strength of glutamatergic synapses in the LS, but the cellular mechanisms underlying long-term synaptic modification in the LS are poorly understood. Here, we examined synaptic transmission and long-term depression (LTD) in brain slices prepared from male and female C57BL/6 mice. No sex differences were observed in whole cell patch-clamp recordings of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor (AMPA-R)- and N-methyl-d-aspartate receptor (NMDA-R)-mediated currents. Low-frequency stimulation of the fimbria fiber bundle (1 Hz 15 min) induced LTD of the LS field excitatory postsynaptic potential (fEPSP). Induction of LTD was blocked by the NMDA-R antagonist (d)-2-amino-5-phosphonovaleric acid (APV), but not the selective antagonist of GluN2B-containing NMDA-Rs ifenprodil. These results demonstrate the NMDA-R dependence of LTD in the LS. The LS is a sexually dimorphic structure, and sex differences in glutamatergic transmission have been reported in vivo; our results suggest sex differences observed in vivo result from network activity rather than intrinsic differences in glutamatergic transmission.NEW & NOTEWORTHY The lateral septum (LS) integrates information from hippocampus and other regions to provide context-dependent (top down or higher order) regulation of mood and motivated behavior. Learning and drugs of abuse induce long-term changes in the strength of glutamatergic projections to the LS; however, the cellular mechanisms underlying such changes are poorly understood. Here, we demonstrate there are no apparent sex differences in fast excitatory transmission and that long-term synaptic depression in the LS is NMDA-R dependent.

UI MeSH Term Description Entries
D008297 Male Males
D008810 Mice, Inbred C57BL One of the first INBRED MOUSE STRAINS to be sequenced. This strain is commonly used as genetic background for transgenic mouse models. Refractory to many tumors, this strain is also preferred model for studying role of genetic variations in development of diseases. Mice, C57BL,Mouse, C57BL,Mouse, Inbred C57BL,C57BL Mice,C57BL Mice, Inbred,C57BL Mouse,C57BL Mouse, Inbred,Inbred C57BL Mice,Inbred C57BL Mouse
D005260 Female Females
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D012686 Septal Nuclei Neural nuclei situated in the septal region. They have afferent and cholinergic efferent connections with a variety of FOREBRAIN and BRAIN STEM areas including the HIPPOCAMPAL FORMATION, the LATERAL HYPOTHALAMUS, the tegmentum, and the AMYGDALA. Included are the dorsal, lateral, medial, and triangular septal nuclei, septofimbrial nucleus, nucleus of diagonal band, nucleus of anterior commissure, and the nucleus of stria terminalis. Bed Nucleus of Stria Terminalis,Nucleus of Anterior Commissure,Nucleus of Diagonal Band,Nucleus of Stria Terminalis,Septofimbrial Nucleus,Dorsal Septal Nucleus,Lateral Septal Nucleus,Lateral Septum Nucleus,Medial Septal Nucleus,Medial Septum Nucleus,Nucleus Interstitialis Striae Terminalis,Nucleus Lateralis Septi,Nucleus Septalis Lateralis,Nucleus Septi Lateralis,Nucleus Striae Terminalis,Nucleus Triangularis Septi,Nucleus of the Stria Terminalis,Septal Nuclear Complex,Triangular Septal Nucleus,Anterior Commissure Nucleus,Complex, Septal Nuclear,Complices, Septal Nuclear,Diagonal Band Nucleus,Laterali, Nucleus Septalis,Laterali, Nucleus Septi,Lateralis Septi, Nucleus,Lateralis Septus, Nucleus,Lateralis, Nucleus Septalis,Lateralis, Nucleus Septi,Nuclear Complex, Septal,Nuclear Complices, Septal,Nuclei, Septal,Nucleus Lateralis Septus,Nucleus Septalis Laterali,Nucleus Septi Laterali,Nucleus Striae Terminali,Nucleus Triangularis Septus,Nucleus, Dorsal Septal,Nucleus, Lateral Septal,Nucleus, Lateral Septum,Nucleus, Medial Septal,Nucleus, Medial Septum,Nucleus, Septofimbrial,Nucleus, Triangular Septal,Septal Nuclear Complices,Septal Nucleus, Dorsal,Septal Nucleus, Lateral,Septal Nucleus, Medial,Septal Nucleus, Triangular,Septalis Laterali, Nucleus,Septalis Lateralis, Nucleus,Septi Laterali, Nucleus,Septi Lateralis, Nucleus,Septi, Nucleus Lateralis,Septi, Nucleus Triangularis,Septum Nucleus, Lateral,Septum Nucleus, Medial,Septus, Nucleus Lateralis,Septus, Nucleus Triangularis,Stria Terminalis Nucleus,Striae Terminali, Nucleus,Striae Terminalis, Nucleus,Terminali, Nucleus Striae,Terminalis, Nucleus Striae,Triangularis Septi, Nucleus,Triangularis Septus, Nucleus
D012727 Sex Characteristics Those characteristics that distinguish one SEX from the other. The primary sex characteristics are the OVARIES and TESTES and their related hormones. Secondary sex characteristics are those which are masculine or feminine but not directly related to reproduction. Gender Characteristics,Gender Differences,Gender Dimorphism,Sex Differences,Sex Dimorphism,Sexual Dichromatism,Sexual Dimorphism,Characteristic, Gender,Characteristic, Sex,Dichromatism, Sexual,Dichromatisms, Sexual,Difference, Sex,Dimorphism, Gender,Dimorphism, Sex,Dimorphism, Sexual,Gender Characteristic,Gender Difference,Gender Dimorphisms,Sex Characteristic,Sex Difference,Sex Dimorphisms,Sexual Dichromatisms,Sexual Dimorphisms
D016194 Receptors, N-Methyl-D-Aspartate A class of ionotropic glutamate receptors characterized by affinity for N-methyl-D-aspartate. NMDA receptors have an allosteric binding site for glycine which must be occupied for the channel to open efficiently and a site within the channel itself to which magnesium ions bind in a voltage-dependent manner. The positive voltage dependence of channel conductance and the high permeability of the conducting channel to calcium ions (as well as to monovalent cations) are important in excitotoxicity and neuronal plasticity. N-Methyl-D-Aspartate Receptor,N-Methyl-D-Aspartate Receptors,NMDA Receptor,NMDA Receptor-Ionophore Complex,NMDA Receptors,Receptors, NMDA,N-Methylaspartate Receptors,Receptors, N-Methylaspartate,N Methyl D Aspartate Receptor,N Methyl D Aspartate Receptors,N Methylaspartate Receptors,NMDA Receptor Ionophore Complex,Receptor, N-Methyl-D-Aspartate,Receptor, NMDA,Receptors, N Methyl D Aspartate,Receptors, N Methylaspartate
D051379 Mice The common name for the genus Mus. Mice, House,Mus,Mus musculus,Mice, Laboratory,Mouse,Mouse, House,Mouse, Laboratory,Mouse, Swiss,Mus domesticus,Mus musculus domesticus,Swiss Mice,House Mice,House Mouse,Laboratory Mice,Laboratory Mouse,Mice, Swiss,Swiss Mouse,domesticus, Mus musculus
D018408 Patch-Clamp Techniques An electrophysiologic technique for studying cells, cell membranes, and occasionally isolated organelles. All patch-clamp methods rely on a very high-resistance seal between a micropipette and a membrane; the seal is usually attained by gentle suction. The four most common variants include on-cell patch, inside-out patch, outside-out patch, and whole-cell clamp. Patch-clamp methods are commonly used to voltage clamp, that is control the voltage across the membrane and measure current flow, but current-clamp methods, in which the current is controlled and the voltage is measured, are also used. Patch Clamp Technique,Patch-Clamp Technic,Patch-Clamp Technique,Voltage-Clamp Technic,Voltage-Clamp Technique,Voltage-Clamp Techniques,Whole-Cell Recording,Patch-Clamp Technics,Voltage-Clamp Technics,Clamp Technique, Patch,Clamp Techniques, Patch,Patch Clamp Technic,Patch Clamp Technics,Patch Clamp Techniques,Recording, Whole-Cell,Recordings, Whole-Cell,Technic, Patch-Clamp,Technic, Voltage-Clamp,Technics, Patch-Clamp,Technics, Voltage-Clamp,Technique, Patch Clamp,Technique, Patch-Clamp,Technique, Voltage-Clamp,Techniques, Patch Clamp,Techniques, Patch-Clamp,Techniques, Voltage-Clamp,Voltage Clamp Technic,Voltage Clamp Technics,Voltage Clamp Technique,Voltage Clamp Techniques,Whole Cell Recording,Whole-Cell Recordings
D019706 Excitatory Postsynaptic Potentials Depolarization of membrane potentials at the SYNAPTIC MEMBRANES of target neurons during neurotransmission. Excitatory postsynaptic potentials can singly or in summation reach the trigger threshold for ACTION POTENTIALS. EPSP,End Plate Potentials,Excitatory Postsynaptic Currents,Current, Excitatory Postsynaptic,Currents, Excitatory Postsynaptic,End Plate Potential,Excitatory Postsynaptic Current,Excitatory Postsynaptic Potential,Plate Potential, End,Plate Potentials, End,Postsynaptic Current, Excitatory,Postsynaptic Currents, Excitatory,Postsynaptic Potential, Excitatory,Postsynaptic Potentials, Excitatory,Potential, End Plate,Potential, Excitatory Postsynaptic,Potentials, End Plate,Potentials, Excitatory Postsynaptic

Related Publications

Chanchanok Chaichim, and Madeleine J Cannings, and Gadiel Dumlao, and John M Power
December 1999, The Journal of neuroscience : the official journal of the Society for Neuroscience,
Chanchanok Chaichim, and Madeleine J Cannings, and Gadiel Dumlao, and John M Power
November 1993, Trends in neurosciences,
Chanchanok Chaichim, and Madeleine J Cannings, and Gadiel Dumlao, and John M Power
January 1990, Synapse (New York, N.Y.),
Chanchanok Chaichim, and Madeleine J Cannings, and Gadiel Dumlao, and John M Power
January 1996, Journal of physiology, Paris,
Chanchanok Chaichim, and Madeleine J Cannings, and Gadiel Dumlao, and John M Power
September 1986, Brain research,
Chanchanok Chaichim, and Madeleine J Cannings, and Gadiel Dumlao, and John M Power
January 1990, Neuroscience,
Chanchanok Chaichim, and Madeleine J Cannings, and Gadiel Dumlao, and John M Power
December 2022, The FEBS journal,
Chanchanok Chaichim, and Madeleine J Cannings, and Gadiel Dumlao, and John M Power
January 1997, Archives italiennes de biologie,
Chanchanok Chaichim, and Madeleine J Cannings, and Gadiel Dumlao, and John M Power
January 1993, Journal of neurophysiology,
Chanchanok Chaichim, and Madeleine J Cannings, and Gadiel Dumlao, and John M Power
October 2020, The world journal of biological psychiatry : the official journal of the World Federation of Societies of Biological Psychiatry,
Copied contents to your clipboard!