Vulnerability of cultured cortical neurons to damage by excitotoxins: differential susceptibility of neurons containing NADPH-diaphorase. 1988

J Y Koh, and D W Choi
Department of Neurology, Stanford University Medical Center, California 94305.

Quantitative concentration-toxicity relationships were determined for the injury of cultured murine cortical neurons by several excitatory amino acid (EAA) agonists. All tested agonists produced concentration-dependent neuronal injury at concentrations between 1 and 1000 microM. With 5 min exposure, glutamate, aspartate, N-methyl-D-aspartate (NMDA), L-homocysteate (HCA), and quisqualate all had similar potencies, destroying half of the neuronal population (LD50) at concentrations of 50-200 microM, and similar efficacies, with 88-92% neuronal loss produced by exposure to high agonist concentrations. Quinolinate and kainate were substantially weaker toxins, producing only 20-30% neuronal loss after 5 min exposure to 3 mM concentrations; with prolonged (24 hr) exposure, 85-95% neuronal loss could be attained. The comparative EAA vulnerability of a specific cortical neuronal subpopulation containing high concentrations of the enzyme, reduced nicotinamide adenine dinucleotide phosphate diaphorase (NADPH-d), was also examined. Glutamate had no differential toxicity on these cells, damaging them at all concentrations in proportion to the general population; however, other, more selective, agonists produced strikingly differential injuries. These NADPH-d-containing [NADPH-d(+)]neurons were selectively resistant to damage by low concentrations of the NMDA agonists quinolinate, HCA, aspartate, or NMDA itself. By contrast, NADPH-d(+)neurons were selectively destroyed by concentrations of quisqualate or kainate too low to produce much general neuronal injury. The differential susceptibility of these neurons was not absolute, as high concentrations of all tested agonists produced nonselective neuronal injury. In light of recent evidence that forebrain NADPH-d(+)neurons are selectively spared in Huntington's disease, the present study continues to support the hypothesis that neuronal loss in Huntington's disease might result from excessive NMDA-receptor stimulation by any selective NMDA agonist. Furthermore, the demonstration that the differential susceptibility of NADPH-d(+)neurons is agonist concentration-dependent, rather than absolute, could provide a basis for explaining some existing conflicting experimental data.

UI MeSH Term Description Entries
D007770 L-Lactate Dehydrogenase A tetrameric enzyme that, along with the coenzyme NAD+, catalyzes the interconversion of LACTATE and PYRUVATE. In vertebrates, genes for three different subunits (LDH-A, LDH-B and LDH-C) exist. Lactate Dehydrogenase,Dehydrogenase, L-Lactate,Dehydrogenase, Lactate,L Lactate Dehydrogenase
D009247 NADH, NADPH Oxidoreductases A group of oxidoreductases that act on NADH or NADPH. In general, enzymes using NADH or NADPH to reduce a substrate are classified according to the reverse reaction, in which NAD+ or NADP+ is formally regarded as an acceptor. This subclass includes only those enzymes in which some other redox carrier is the acceptor. (Enzyme Nomenclature, 1992, p100) EC 1.6. Oxidoreductases, NADH, NADPH,NADPH Oxidoreductases NADH,Oxidoreductases NADH, NADPH
D009252 NADPH Dehydrogenase A flavoprotein that reversibly oxidizes NADPH to NADP and a reduced acceptor. EC 1.6.99.1. NADP Dehydrogenase,NADP Diaphorase,NADPH Diaphorase,Old Yellow Enzyme,TPN Diaphorase,Dehydrogenase, NADP,Dehydrogenase, NADPH,Diaphorase, NADP,Diaphorase, NADPH,Diaphorase, TPN,Enzyme, Old Yellow
D009474 Neurons The basic cellular units of nervous tissue. Each neuron consists of a body, an axon, and dendrites. Their purpose is to receive, conduct, and transmit impulses in the NERVOUS SYSTEM. Nerve Cells,Cell, Nerve,Cells, Nerve,Nerve Cell,Neuron
D009498 Neurotoxins Toxic substances from microorganisms, plants or animals that interfere with the functions of the nervous system. Most venoms contain neurotoxic substances. Myotoxins are included in this concept. Alpha-Neurotoxin,Excitatory Neurotoxin,Excitotoxins,Myotoxin,Myotoxins,Neurotoxin,Alpha-Neurotoxins,Excitatory Neurotoxins,Excitotoxin,Alpha Neurotoxin,Alpha Neurotoxins,Neurotoxin, Excitatory,Neurotoxins, Excitatory
D009994 Osmolar Concentration The concentration of osmotically active particles in solution expressed in terms of osmoles of solute per liter of solution. Osmolality is expressed in terms of osmoles of solute per kilogram of solvent. Ionic Strength,Osmolality,Osmolarity,Concentration, Osmolar,Concentrations, Osmolar,Ionic Strengths,Osmolalities,Osmolar Concentrations,Osmolarities,Strength, Ionic,Strengths, Ionic
D002478 Cells, Cultured Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others. Cultured Cells,Cell, Cultured,Cultured Cell
D002540 Cerebral Cortex The thin layer of GRAY MATTER on the surface of the CEREBRAL HEMISPHERES that develops from the TELENCEPHALON and folds into gyri and sulci. It reaches its highest development in humans and is responsible for intellectual faculties and higher mental functions. Allocortex,Archipallium,Cortex Cerebri,Cortical Plate,Paleocortex,Periallocortex,Allocortices,Archipalliums,Cerebral Cortices,Cortex Cerebrus,Cortex, Cerebral,Cortical Plates,Paleocortices,Periallocortices,Plate, Cortical
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia

Related Publications

J Y Koh, and D W Choi
April 1991, The Journal of comparative neurology,
J Y Koh, and D W Choi
January 2001, Journal of chemical neuroanatomy,
Copied contents to your clipboard!