Thrombolytic therapy for pulmonary embolism. 2021

Zhiliang Zuo, and Jirong Yue, and Bi Rong Dong, and Taixiang Wu, and Guan J Liu, and Qiukui Hao
The Center of Gerontology and Geriatrics, West China Hospital, Sichuan University, Chengdu, China.

Thrombolytic therapy is usually reserved for people with clinically serious or massive pulmonary embolism (PE). Evidence suggests that thrombolytic agents may dissolve blood clots more rapidly than heparin and may reduce the death rate associated with PE. However, there are still concerns about the possible risk of adverse effects of thrombolytic therapy, such as major or minor haemorrhage. This is the fourth update of the Cochrane review first published in 2006. To assess the effects of thrombolytic therapy for acute pulmonary embolism. The Cochrane Vascular Information Specialist searched the Cochrane Vascular Specialised Register, CENTRAL, MEDLINE, Embase, and CINAHL databases and the World Health Organization International Clinical Trials Registry Platform and ClinicalTrials.gov trials registers to 17 August 2020. We undertook reference checking to identify additional studies. We included randomised controlled trials (RCTs) that compared thrombolytic therapy followed by heparin versus heparin alone, heparin plus placebo, or surgical intervention for people with acute PE (massive/submassive). We did not include trials comparing two different thrombolytic agents or different doses of the same thrombolytic drug. Two review authors (ZZ, QH) assessed the eligibility and risk of bias of trials and extracted data. We calculated effect estimates using the odds ratio (OR) with a 95% confidence interval (CI) or the mean difference (MD) with a 95% CI. The primary outcomes of interest were death, recurrence of PE and haemorrhagic events. We assessed the certainty of the evidence using GRADE criteria. We identified three new studies for inclusion in this update. We included 21 trials in the review, with a total of 2401 participants. No studies compared thrombolytics versus surgical intervention. We were not able to include one study in the meta-analysis because it provided no extractable data. Most studies carried a high or unclear risk of bias related to randomisation and blinding. Meta-analysis showed that, compared to control (heparin alone or heparin plus placebo), thrombolytics plus heparin probably reduce both the odds of death (OR 0.58, 95% CI 0.38 to 0.88; 19 studies, 2319 participants; low-certainty evidence), and recurrence of PE (OR 0.54, 95% CI 0.32 to 0.91; 12 studies, 2050 participants; low-certainty evidence). Effects on mortality weakened when six studies at high risk of bias were excluded from analysis (OR 0.71, 95% CI 0.45 to 1.13; 13 studies, 2046 participants) and in the analysis of submassive PE participants (OR 0.61, 95% CI 0.37 to 1.02; 1993 participants). Effects on recurrence of PE also weakened after removing one study at high risk of bias for sensitivity analysis (OR 0.60, 95% CI 0.35 to 1.04; 11 studies, 1949 participants). We downgraded the certainty of evidence to low because of 'Risk of bias' concerns. Major haemorrhagic events were probably more common in the thrombolytics group than in the control group (OR 2.84, 95% CI 1.92 to 4.20; 15 studies, 2101 participants; moderate-certainty evidence), as were minor haemorrhagic events (OR 2.97, 95% CI 1.66 to 5.30; 13 studies,1757 participants; low-certainty evidence). We downgraded the certainty of the evidence to moderate or low because of 'Risk of bias' concerns and inconsistency. Haemorrhagic stroke may occur more often in the thrombolytics group than in the control group (OR 7.59, 95% CI 1.38 to 41.72; 2 studies, 1091 participants). Limited data indicated that thrombolytics may benefit haemodynamic outcomes, perfusion lung scanning, pulmonary angiogram assessment, echocardiograms, pulmonary hypertension, coagulation parameters, composite clinical outcomes, need for escalation and survival time to a greater extent than heparin alone. However, the heterogeneity of the studies and the small number of participants involved warrant caution when interpreting results. The length of hospital stay was shorter in the thrombolytics group than in the control group (mean difference (MD) -1.40 days, 95% CI -2.69 to -0.11; 5 studies, 368 participants). Haemodynamic decompensation may occur less in the thrombolytics group than in the control group (OR 0.36, 95% CI 0.20 to 0.66; 3 studies, 1157 participants). Quality of life was similar between the two treatment groups. None of the included studies provided data on post-thrombotic syndrome or on cost comparison. Low-certainty evidence suggests that thrombolytics may reduce death following acute pulmonary embolism compared with heparin (the effectiveness was mainly driven by one trial with massive PE). Thrombolytic therapy may be helpful in reducing the recurrence of pulmonary emboli but may cause more major and minor haemorrhagic events, including haemorrhagic stroke. More studies of high methodological quality are needed to assess safety and cost effectiveness of thrombolytic therapy for people with pulmonary embolism.

UI MeSH Term Description Entries
D011655 Pulmonary Embolism Blocking of the PULMONARY ARTERY or one of its branches by an EMBOLUS. Pulmonary Thromboembolism,Thromboembolism, Pulmonary,Embolism, Pulmonary,Embolisms, Pulmonary,Pulmonary Embolisms,Pulmonary Thromboembolisms,Thromboembolisms, Pulmonary
D012008 Recurrence The return of a sign, symptom, or disease after a remission. Recrudescence,Relapse,Recrudescences,Recurrences,Relapses
D002423 Cause of Death Factors which produce cessation of all vital bodily functions. They can be analyzed from an epidemiologic viewpoint. Causes of Death,Death Cause,Death Causes
D005343 Fibrinolytic Agents Fibrinolysin or agents that convert plasminogen to FIBRINOLYSIN. Antithrombic Drug,Antithrombotic Agent,Antithrombotic Agents,Fibrinolytic Agent,Fibrinolytic Drug,Thrombolytic Agent,Thrombolytic Agents,Thrombolytic Drug,Antithrombic Drugs,Fibrinolytic Drugs,Thrombolytic Drugs,Agent, Antithrombotic,Agent, Fibrinolytic,Agent, Thrombolytic,Agents, Antithrombotic,Drug, Antithrombic,Drug, Fibrinolytic,Drug, Thrombolytic,Drugs, Antithrombic
D006470 Hemorrhage Bleeding or escape of blood from a vessel. Bleeding,Hemorrhages
D006493 Heparin A highly acidic mucopolysaccharide formed of equal parts of sulfated D-glucosamine and D-glucuronic acid with sulfaminic bridges. The molecular weight ranges from six to twenty thousand. Heparin occurs in and is obtained from liver, lung, mast cells, etc., of vertebrates. Its function is unknown, but it is used to prevent blood clotting in vivo and vitro, in the form of many different salts. Heparinic Acid,alpha-Heparin,Heparin Sodium,Liquaemin,Sodium Heparin,Unfractionated Heparin,Heparin, Sodium,Heparin, Unfractionated,alpha Heparin
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000208 Acute Disease Disease having a short and relatively severe course. Acute Diseases,Disease, Acute,Diseases, Acute
D015912 Thrombolytic Therapy Use of infusions of FIBRINOLYTIC AGENTS to destroy or dissolve thrombi in blood vessels or bypass grafts. Fibrinolytic Therapy,Thrombolysis, Therapeutic,Therapeutic Thrombolysis,Therapy, Fibrinolytic,Therapy, Thrombolytic,Fibrinolytic Therapies,Therapeutic Thrombolyses,Therapies, Fibrinolytic,Therapies, Thrombolytic,Thrombolyses, Therapeutic,Thrombolytic Therapies
D015982 Bias Any deviation of results or inferences from the truth, or processes leading to such deviation. Bias can result from several sources: one-sided or systematic variations in measurement from the true value (systematic error); flaws in study design; deviation of inferences, interpretations, or analyses based on flawed data or data collection; etc. There is no sense of prejudice or subjectivity implied in the assessment of bias under these conditions. Aggregation Bias,Bias, Aggregation,Bias, Ecological,Bias, Statistical,Bias, Systematic,Ecological Bias,Outcome Measurement Errors,Statistical Bias,Systematic Bias,Bias, Epidemiologic,Biases,Biases, Ecological,Biases, Statistical,Ecological Biases,Ecological Fallacies,Ecological Fallacy,Epidemiologic Biases,Experimental Bias,Fallacies, Ecological,Fallacy, Ecological,Scientific Bias,Statistical Biases,Truncation Bias,Truncation Biases,Bias, Experimental,Bias, Scientific,Bias, Truncation,Biase, Epidemiologic,Biases, Epidemiologic,Biases, Truncation,Epidemiologic Biase,Error, Outcome Measurement,Errors, Outcome Measurement,Outcome Measurement Error

Related Publications

Zhiliang Zuo, and Jirong Yue, and Bi Rong Dong, and Taixiang Wu, and Guan J Liu, and Qiukui Hao
June 2014, JAMA,
Zhiliang Zuo, and Jirong Yue, and Bi Rong Dong, and Taixiang Wu, and Guan J Liu, and Qiukui Hao
September 2015, The Cochrane database of systematic reviews,
Zhiliang Zuo, and Jirong Yue, and Bi Rong Dong, and Taixiang Wu, and Guan J Liu, and Qiukui Hao
January 1998, Archives of internal medicine,
Zhiliang Zuo, and Jirong Yue, and Bi Rong Dong, and Taixiang Wu, and Guan J Liu, and Qiukui Hao
May 1993, Chest,
Zhiliang Zuo, and Jirong Yue, and Bi Rong Dong, and Taixiang Wu, and Guan J Liu, and Qiukui Hao
December 2018, The Cochrane database of systematic reviews,
Zhiliang Zuo, and Jirong Yue, and Bi Rong Dong, and Taixiang Wu, and Guan J Liu, and Qiukui Hao
April 2006, The Cochrane database of systematic reviews,
Zhiliang Zuo, and Jirong Yue, and Bi Rong Dong, and Taixiang Wu, and Guan J Liu, and Qiukui Hao
December 2011, Journal des maladies vasculaires,
Zhiliang Zuo, and Jirong Yue, and Bi Rong Dong, and Taixiang Wu, and Guan J Liu, and Qiukui Hao
December 2000, Canadian journal of surgery. Journal canadien de chirurgie,
Zhiliang Zuo, and Jirong Yue, and Bi Rong Dong, and Taixiang Wu, and Guan J Liu, and Qiukui Hao
July 2009, The Cochrane database of systematic reviews,
Zhiliang Zuo, and Jirong Yue, and Bi Rong Dong, and Taixiang Wu, and Guan J Liu, and Qiukui Hao
September 2012, Best practice & research. Clinical haematology,
Copied contents to your clipboard!