High-throughput enrichment and isolation of megakaryocyte progenitor cells from the mouse bone marrow. 2021

Lucas M Bush, and Connor P Healy, and James E Marvin, and Tara L Deans
Department of Biomedical Engineering, University of Utah, Salt Lake City, UT, 84112, USA.

Megakaryocytes are a rare population of cells that develop in the bone marrow and function to produce platelets that circulate throughout the body and form clots to stop or prevent bleeding. A major challenge in studying megakaryocyte development, and the diseases that arise from their dysfunction, is the identification, classification, and enrichment of megakaryocyte progenitor cells that are produced during hematopoiesis. Here, we present a high throughput strategy for identifying and isolating megakaryocytes and their progenitor cells from a heterogeneous population of bone marrow samples. Specifically, we couple thrombopoietin (TPO) induction, image flow cytometry, and principal component analysis (PCA) to identify and enrich for megakaryocyte progenitor cells that are capable of self-renewal and directly differentiating into mature megakaryocytes. This enrichment strategy distinguishes megakaryocyte progenitors from other lineage-committed cells in a high throughput manner. Furthermore, by using image flow cytometry with PCA, we have identified a combination of markers and characteristics that can be used to isolate megakaryocyte progenitor cells using standard flow cytometry methods. Altogether, these techniques enable the high throughput enrichment and isolation of cells in the megakaryocyte lineage and have the potential to enable rapid disease identification and diagnoses ahead of severe disease progression.

UI MeSH Term Description Entries
D008533 Megakaryocytes Very large BONE MARROW CELLS which release mature BLOOD PLATELETS. Megakaryocyte
D001792 Blood Platelets Non-nucleated disk-shaped cells formed in the megakaryocyte and found in the blood of all mammals. They are mainly involved in blood coagulation. Platelets,Thrombocytes,Blood Platelet,Platelet,Platelet, Blood,Platelets, Blood,Thrombocyte
D001854 Bone Marrow Cells Cells contained in the bone marrow including fat cells (see ADIPOCYTES); STROMAL CELLS; MEGAKARYOCYTES; and the immediate precursors of most blood cells. Bone Marrow Cell,Cell, Bone Marrow,Cells, Bone Marrow,Marrow Cell, Bone,Marrow Cells, Bone
D002454 Cell Differentiation Progressive restriction of the developmental potential and increasing specialization of function that leads to the formation of specialized cells, tissues, and organs. Differentiation, Cell,Cell Differentiations,Differentiations, Cell
D002469 Cell Separation Techniques for separating distinct populations of cells. Cell Isolation,Cell Segregation,Isolation, Cell,Cell Isolations,Cell Segregations,Cell Separations,Isolations, Cell,Segregation, Cell,Segregations, Cell,Separation, Cell,Separations, Cell
D005434 Flow Cytometry Technique using an instrument system for making, processing, and displaying one or more measurements on individual cells obtained from a cell suspension. Cells are usually stained with one or more fluorescent dyes specific to cell components of interest, e.g., DNA, and fluorescence of each cell is measured as it rapidly transverses the excitation beam (laser or mercury arc lamp). Fluorescence provides a quantitative measure of various biochemical and biophysical properties of the cell, as well as a basis for cell sorting. Other measurable optical parameters include light absorption and light scattering, the latter being applicable to the measurement of cell size, shape, density, granularity, and stain uptake. Cytofluorometry, Flow,Cytometry, Flow,Flow Microfluorimetry,Fluorescence-Activated Cell Sorting,Microfluorometry, Flow,Cell Sorting, Fluorescence-Activated,Cell Sortings, Fluorescence-Activated,Cytofluorometries, Flow,Cytometries, Flow,Flow Cytofluorometries,Flow Cytofluorometry,Flow Cytometries,Flow Microfluorometries,Flow Microfluorometry,Fluorescence Activated Cell Sorting,Fluorescence-Activated Cell Sortings,Microfluorimetry, Flow,Microfluorometries, Flow,Sorting, Fluorescence-Activated Cell,Sortings, Fluorescence-Activated Cell
D006410 Hematopoiesis The development and formation of various types of BLOOD CELLS. Hematopoiesis can take place in the BONE MARROW (medullary) or outside the bone marrow (HEMATOPOIESIS, EXTRAMEDULLARY). Hematopoiesis, Medullary,Haematopoiesis,Medullary Hematopoiesis
D000066673 Cell Self Renewal The ability of certain cell types, such as progenitor cells or tumor cells, to go through numerous cycles of CELL DIVISION while still maintaining an undifferentiated or partially differentiated state. Stem Cell Renewal,Stem Cell Self-Renewal,Cell Renewal, Stem,Cell Renewals, Stem,Cell Self Renewals,Cell Self-Renewal, Stem,Cell Self-Renewals, Stem,Renewal, Cell Self,Renewal, Stem Cell,Renewals, Cell Self,Renewals, Stem Cell,Self Renewal, Cell,Self Renewals, Cell,Self-Renewal, Stem Cell,Self-Renewals, Stem Cell,Stem Cell Renewals,Stem Cell Self Renewal,Stem Cell Self-Renewals
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D013234 Stem Cells Relatively undifferentiated cells that retain the ability to divide and proliferate throughout postnatal life to provide progenitor cells that can differentiate into specialized cells. Colony-Forming Units,Mother Cells,Progenitor Cells,Colony-Forming Unit,Cell, Mother,Cell, Progenitor,Cell, Stem,Cells, Mother,Cells, Progenitor,Cells, Stem,Colony Forming Unit,Colony Forming Units,Mother Cell,Progenitor Cell,Stem Cell

Related Publications

Lucas M Bush, and Connor P Healy, and James E Marvin, and Tara L Deans
May 2004, Biochemical and biophysical research communications,
Lucas M Bush, and Connor P Healy, and James E Marvin, and Tara L Deans
January 2016, Methods in molecular biology (Clifton, N.J.),
Lucas M Bush, and Connor P Healy, and James E Marvin, and Tara L Deans
October 1984, Blood,
Lucas M Bush, and Connor P Healy, and James E Marvin, and Tara L Deans
January 2011, PloS one,
Lucas M Bush, and Connor P Healy, and James E Marvin, and Tara L Deans
December 1988, Molecular and cellular biochemistry,
Lucas M Bush, and Connor P Healy, and James E Marvin, and Tara L Deans
January 2019, Frontiers in cellular neuroscience,
Lucas M Bush, and Connor P Healy, and James E Marvin, and Tara L Deans
August 1987, Experimental hematology,
Lucas M Bush, and Connor P Healy, and James E Marvin, and Tara L Deans
July 2012, Cytotherapy,
Lucas M Bush, and Connor P Healy, and James E Marvin, and Tara L Deans
February 2021, Biotechnic & histochemistry : official publication of the Biological Stain Commission,
Lucas M Bush, and Connor P Healy, and James E Marvin, and Tara L Deans
November 2013, Annals of hematology,
Copied contents to your clipboard!