Osmoreceptor mechanism for oxytocin release in the rat. 1988

H Negoro, and T Higuchi, and Y Tadokoro, and K Honda
Department of Physiology, Fukui Medical School, Japan.

In order to determine whether oxytocin release is controlled by an osmoreceptor mechanism identical with that for vasopressin release, the plasma oxytocin concentration and plasma osmolality were measured during intraatrial infusion and after intraventricular injection of various osmotic solutions in unanesthetized rats. Intraatrial infusion of 0.6 M NaCl Locke solution (L.S.) or 1.2 M mannitol L.S. elevated plasma oxytocin significantly, while 1.2 M urea L.S. caused only a small increase and isotonic L.S. did not change in plasma oxytocin. All hypertonic solutions produced significant and similar increases in the plasma osmolality. Plasma oxytocin was positively correlated with plasma osmolality in the animals infused with hypertonic NaCl or mannitol but not in the animals infused with hypertonic urea. The injection of 2 microliters of 0.6 M NaCl artificial cerebrospinal fluid (CSF) or 1.2 M mannitol CSF into the third ventricle caused a significant increase in plasma oxytocin immediately (5 min after injection) without changing plasma osmolality, while the intraventricular injection of 1.2 M urea CSF or isotonic CSF produced no significant change in plasma oxytocin. These results indicate that oxytocin release is controlled by osmoreceptors rather than Na receptors, that the adequate stimulus for the osmoreceptors is one which produces cellular dehydration and that the osmoreceptors are located in the brain region which is accessible to osmotic agents from both the outside and inside of the blood-brain barrier. Since the organum vasculosum of the lamina terminalis (OVLT) lacks a blood-brain barrier and is known to be involved in osmotic control of vasopressin release, a lesion was made in the anteroventral region of the third ventricle which encompasses the OVLT and the effect of hypertonic NaCl infusion on oxytocin release was examined. No significant increase in plasma oxytocin was observed after intraatrial infusion of 0.6 M NaCl L.S. in the lesioned rats. All of these findings lead to the conclusion that oxytocin release is under the control of osmoreceptors identical to those for vasopressin release.

UI MeSH Term Description Entries
D006982 Hypertonic Solutions Solutions that have a greater osmotic pressure than a reference solution such as blood, plasma, or interstitial fluid. Hypertonic Solution,Solution, Hypertonic,Solutions, Hypertonic
D007261 Infusions, Intra-Arterial Regional infusion of drugs via an arterial catheter. Often a pump is used to impel the drug through the catheter. Used in therapy of cancer, upper gastrointestinal hemorrhage, infection, and peripheral vascular disease. Infusions, Regional Arterial,Infusions, Intra Arterial,Infusions, Intraarterial,Arterial Infusion, Intra,Arterial Infusion, Regional,Arterial Infusions, Intra,Arterial Infusions, Regional,Infusion, Intra Arterial,Infusion, Intra-Arterial,Infusion, Intraarterial,Infusion, Regional Arterial,Intra Arterial Infusion,Intra Arterial Infusions,Intra-Arterial Infusion,Intra-Arterial Infusions,Intraarterial Infusion,Intraarterial Infusions,Regional Arterial Infusion,Regional Arterial Infusions
D007276 Injections, Intraventricular Injections into the cerebral ventricles. Intraventricular Injections,Injection, Intraventricular,Intraventricular Injection
D008297 Male Males
D010121 Oxytocin A nonapeptide hormone released from the neurohypophysis (PITUITARY GLAND, POSTERIOR). It differs from VASOPRESSIN by two amino acids at residues 3 and 8. Oxytocin acts on SMOOTH MUSCLE CELLS, such as causing UTERINE CONTRACTIONS and MILK EJECTION. Ocytocin,Pitocin,Syntocinon
D011919 Rats, Inbred Strains Genetically identical individuals developed from brother and sister matings which have been carried out for twenty or more generations or by parent x offspring matings carried out with certain restrictions. This also includes animals with a long history of closed colony breeding. August Rats,Inbred Rat Strains,Inbred Strain of Rat,Inbred Strain of Rats,Inbred Strains of Rats,Rat, Inbred Strain,August Rat,Inbred Rat Strain,Inbred Strain Rat,Inbred Strain Rats,Inbred Strains Rat,Inbred Strains Rats,Rat Inbred Strain,Rat Inbred Strains,Rat Strain, Inbred,Rat Strains, Inbred,Rat, August,Rat, Inbred Strains,Rats Inbred Strain,Rats Inbred Strains,Rats, August,Rats, Inbred Strain,Strain Rat, Inbred,Strain Rats, Inbred,Strain, Inbred Rat,Strains, Inbred Rat
D002551 Cerebral Ventricle Neoplasms Neoplasms located in the brain ventricles, including the two lateral, the third, and the fourth ventricle. Ventricular tumors may be primary (e.g., CHOROID PLEXUS NEOPLASMS and GLIOMA, SUBEPENDYMAL), metastasize from distant organs, or occur as extensions of locally invasive tumors from adjacent brain structures. Intraventricular Neoplasms,Ventricular Neoplasms, Brain,Ventricular Tumors, Brain,Brain Ventricular Neoplasms,Cerebral Ventricle Tumors,Cerebroventricular Neoplasms,Neoplasms, Cerebral Ventricle,Neoplasms, Cerebroventricular,Neoplasms, Intraventricular,Neoplasms, Ventricular, Brain,Brain Ventricular Neoplasm,Brain Ventricular Tumor,Brain Ventricular Tumors,Cerebral Ventricle Neoplasm,Cerebral Ventricle Tumor,Cerebroventricular Neoplasm,Intraventricular Neoplasm,Neoplasm, Brain Ventricular,Neoplasm, Cerebral Ventricle,Neoplasm, Cerebroventricular,Neoplasm, Intraventricular,Neoplasms, Brain Ventricular,Tumor, Brain Ventricular,Tumor, Cerebral Ventricle,Tumors, Brain Ventricular,Tumors, Cerebral Ventricle,Ventricle Tumor, Cerebral,Ventricle Tumors, Cerebral,Ventricular Neoplasm, Brain,Ventricular Tumor, Brain
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D014667 Vasopressins Antidiuretic hormones released by the NEUROHYPOPHYSIS of all vertebrates (structure varies with species) to regulate water balance and OSMOLARITY. In general, vasopressin is a nonapeptide consisting of a six-amino-acid ring with a cysteine 1 to cysteine 6 disulfide bridge or an octapeptide containing a CYSTINE. All mammals have arginine vasopressin except the pig with a lysine at position 8. Vasopressin, a vasoconstrictor, acts on the KIDNEY COLLECTING DUCTS to increase water reabsorption, increase blood volume and blood pressure. Antidiuretic Hormone,Antidiuretic Hormones,beta-Hypophamine,Pitressin,Vasopressin,Vasopressin (USP),Hormone, Antidiuretic,beta Hypophamine
D014882 Water-Electrolyte Balance The balance of fluid in the BODY FLUID COMPARTMENTS; total BODY WATER; BLOOD VOLUME; EXTRACELLULAR SPACE; INTRACELLULAR SPACE, maintained by processes in the body that regulate the intake and excretion of WATER and ELECTROLYTES, particularly SODIUM and POTASSIUM. Fluid Balance,Electrolyte Balance,Balance, Electrolyte,Balance, Fluid,Balance, Water-Electrolyte,Water Electrolyte Balance

Related Publications

H Negoro, and T Higuchi, and Y Tadokoro, and K Honda
October 1976, The American journal of physiology,
H Negoro, and T Higuchi, and Y Tadokoro, and K Honda
May 1980, The American journal of physiology,
H Negoro, and T Higuchi, and Y Tadokoro, and K Honda
January 1999, Neuro endocrinology letters,
H Negoro, and T Higuchi, and Y Tadokoro, and K Honda
July 1965, Pflugers Archiv fur die gesamte Physiologie des Menschen und der Tiere,
H Negoro, and T Higuchi, and Y Tadokoro, and K Honda
November 1978, The Journal of pharmacology and experimental therapeutics,
H Negoro, and T Higuchi, and Y Tadokoro, and K Honda
May 1956, The Journal of physiology,
H Negoro, and T Higuchi, and Y Tadokoro, and K Honda
January 1970, The American journal of physiology,
H Negoro, and T Higuchi, and Y Tadokoro, and K Honda
October 1971, Nature: New biology,
H Negoro, and T Higuchi, and Y Tadokoro, and K Honda
January 1982, Proceedings of the Western Pharmacology Society,
H Negoro, and T Higuchi, and Y Tadokoro, and K Honda
January 1988, Neuropeptides,
Copied contents to your clipboard!