Identification of bound pyruvate essential for the activity of phosphatidylserine decarboxylase of Escherichia coli. 1978

M Satre, and E P Kennedy

Phosphatidylserine decarboxylase, an intrinsic membrane protein of Escherichia coli, catalyzes the decarboxylation of phosphatidylserine, the final step in the biosynthesis of phosphatidylethanolamine, the principal membrane lipid of this organism. The purified enzyme lacks the absorption spectrum characteristic of pyridoxal-containing enzymes, and it has now been found to contain bound pyruvate, the carbonyl function of which is essential for catalytic activity. The decarboxylase is inactivated by treatment with a number of reagents that attack carbonyl groups, including sodium borohydride. Reduction with tritiated borohydride leads to the introduction of stably bound radioactivity, which, after acid hydrolysis, has been identified as tritiated lactate by several chromatographic procedures and by treatment with lactate dehydrogenase. The enzyme resists inactivation by cyanoborohydride in the absence of substrate, but is readily inactivated by this reagent in the presence of phosphatidylserine. Under the conditions of treatment of neutral pH, cyanoborohydride does not react with carbonyl residues at an appreciable rate, but reduces imino groups much more rapidly. This finding, together with demonstrated dependence of the enzyme upon the carbonyl residue of pyruvate for activity, strongly suggests that a Schiff base is formed by addition of the amino group of phosphatidylserine to the pyruvate residue of the enzyme as an essential step in the action of the decarboxylase.

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D010718 Phosphatidylserines Derivatives of PHOSPHATIDIC ACIDS in which the phosphoric acid is bound in ester linkage to a SERINE moiety. Serine Phosphoglycerides,Phosphatidyl Serine,Phosphatidyl Serines,Phosphatidylserine,Phosphoglycerides, Serine,Serine, Phosphatidyl,Serines, Phosphatidyl
D011773 Pyruvates Derivatives of PYRUVIC ACID, including its salts and esters.
D002262 Carboxy-Lyases Enzymes that catalyze the addition of a carboxyl group to a compound (carboxylases) or the removal of a carboxyl group from a compound (decarboxylases). EC 4.1.1. Carboxy-Lyase,Decarboxylase,Decarboxylases,Carboxy Lyase,Carboxy Lyases
D004926 Escherichia coli A species of gram-negative, facultatively anaerobic, rod-shaped bacteria (GRAM-NEGATIVE FACULTATIVELY ANAEROBIC RODS) commonly found in the lower part of the intestine of warm-blooded animals. It is usually nonpathogenic, but some strains are known to produce DIARRHEA and pyogenic infections. Pathogenic strains (virotypes) are classified by their specific pathogenic mechanisms such as toxins (ENTEROTOXIGENIC ESCHERICHIA COLI), etc. Alkalescens-Dispar Group,Bacillus coli,Bacterium coli,Bacterium coli commune,Diffusely Adherent Escherichia coli,E coli,EAggEC,Enteroaggregative Escherichia coli,Enterococcus coli,Diffusely Adherent E. coli,Enteroaggregative E. coli,Enteroinvasive E. coli,Enteroinvasive Escherichia coli
D006834 Hydrazines Substituted derivatives of hydrazine (formula H2N-NH2). Hydrazide
D006898 Hydroxylamines Organic compounds that contain the (-NH2OH) radical.
D001665 Binding Sites The parts of a macromolecule that directly participate in its specific combination with another molecule. Combining Site,Binding Site,Combining Sites,Site, Binding,Site, Combining,Sites, Binding,Sites, Combining

Related Publications

M Satre, and E P Kennedy
January 1992, Methods in enzymology,
M Satre, and E P Kennedy
January 1981, Methods in enzymology,
M Satre, and E P Kennedy
August 1988, The Journal of biological chemistry,
M Satre, and E P Kennedy
May 1974, The Journal of biological chemistry,
M Satre, and E P Kennedy
December 1991, Journal of general microbiology,
Copied contents to your clipboard!