Differential expression of individual members of the histone multigene family due to sequences in the 5' and 3' regions of the genes. 1988

B J Levine, and T J Liu, and W F Marzluff, and A I Skoultchi
Department of Cell Biology, Albert Einstein College of Medicine, Bronx, New York 10461.

Histone proteins are encoded by a multigene family. The H3.2(614) and H2a(614) genes are present as single copies which are expressed at high levels, accounting for 30 to 40% of the H3 and H2a mRNAs, respectively, in different types of mouse cells. The other genes which have been isolated each contribute only a very small amount to the total type-specific mRNA pool. We demonstrate here that the differences in the level of expression of these genes are partly due to differences in their transcription rates. To investigate the sequences responsible for these differences in expression among the members of each family, we carried out DNA-mediated gene transfer experiments with both intact and chimeric histone genes. The 5' region of a highly expressed gene [H3.2(614) or H2a(614)] was attached to the 3' region of a histone gene which was expressed at low levels (H3-221 or H2a-291) and vice versa. The results show that sequences in both the 5' and 3' regions of the H3.2(614) and H2a(614) genes contribute to their high level of mRNA production by two independent mechanisms. The effect of the 3' sequences on mRNA accumulation has been narrowed to a 65-base-pair region including the 3'-terminal palindrome and downstream signal implicated in mRNA processing.

UI MeSH Term Description Entries
D010053 Ovary The reproductive organ (GONADS) in female animals. In vertebrates, the ovary contains two functional parts: the OVARIAN FOLLICLE for the production of female germ cells (OOGENESIS); and the endocrine cells (GRANULOSA CELLS; THECA CELLS; and LUTEAL CELLS) for the production of ESTROGENS and PROGESTERONE. Ovaries
D011993 Recombinant Fusion Proteins Recombinant proteins produced by the GENETIC TRANSLATION of fused genes formed by the combination of NUCLEIC ACID REGULATORY SEQUENCES of one or more genes with the protein coding sequences of one or more genes. Fusion Proteins, Recombinant,Recombinant Chimeric Protein,Recombinant Fusion Protein,Recombinant Hybrid Protein,Chimeric Proteins, Recombinant,Hybrid Proteins, Recombinant,Recombinant Chimeric Proteins,Recombinant Hybrid Proteins,Chimeric Protein, Recombinant,Fusion Protein, Recombinant,Hybrid Protein, Recombinant,Protein, Recombinant Chimeric,Protein, Recombinant Fusion,Protein, Recombinant Hybrid,Proteins, Recombinant Chimeric,Proteins, Recombinant Fusion,Proteins, Recombinant Hybrid
D012045 Regulatory Sequences, Nucleic Acid Nucleic acid sequences involved in regulating the expression of genes. Nucleic Acid Regulatory Sequences,Regulatory Regions, Nucleic Acid (Genetics),Region, Regulatory,Regions, Regulatory,Regulator Regions, Nucleic Acid,Regulatory Region,Regulatory Regions
D002460 Cell Line Established cell cultures that have the potential to propagate indefinitely. Cell Lines,Line, Cell,Lines, Cell
D003412 Cricetulus A genus of the family Muridae consisting of eleven species. C. migratorius, the grey or Armenian hamster, and C. griseus, the Chinese hamster, are the two species used in biomedical research. Hamsters, Armenian,Hamsters, Chinese,Hamsters, Grey,Armenian Hamster,Armenian Hamsters,Chinese Hamster,Chinese Hamsters,Grey Hamster,Grey Hamsters,Hamster, Armenian,Hamster, Chinese,Hamster, Grey
D005260 Female Females
D005810 Multigene Family A set of genes descended by duplication and variation from some ancestral gene. Such genes may be clustered together on the same chromosome or dispersed on different chromosomes. Examples of multigene families include those that encode the hemoglobins, immunoglobulins, histocompatibility antigens, actins, tubulins, keratins, collagens, heat shock proteins, salivary glue proteins, chorion proteins, cuticle proteins, yolk proteins, and phaseolins, as well as histones, ribosomal RNA, and transfer RNA genes. The latter three are examples of reiterated genes, where hundreds of identical genes are present in a tandem array. (King & Stanfield, A Dictionary of Genetics, 4th ed) Gene Clusters,Genes, Reiterated,Cluster, Gene,Clusters, Gene,Families, Multigene,Family, Multigene,Gene Cluster,Gene, Reiterated,Multigene Families,Reiterated Gene,Reiterated Genes
D006224 Cricetinae A subfamily in the family MURIDAE, comprising the hamsters. Four of the more common genera are Cricetus, CRICETULUS; MESOCRICETUS; and PHODOPUS. Cricetus,Hamsters,Hamster
D006657 Histones Small chromosomal proteins (approx 12-20 kD) possessing an open, unfolded structure and attached to the DNA in cell nuclei by ionic linkages. Classification into the various types (designated histone I, histone II, etc.) is based on the relative amounts of arginine and lysine in each. Histone,Histone H1,Histone H1(s),Histone H2a,Histone H2b,Histone H3,Histone H3.3,Histone H4,Histone H5,Histone H7
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia

Related Publications

B J Levine, and T J Liu, and W F Marzluff, and A I Skoultchi
July 2001, Plant physiology,
B J Levine, and T J Liu, and W F Marzluff, and A I Skoultchi
December 1984, Proceedings of the National Academy of Sciences of the United States of America,
B J Levine, and T J Liu, and W F Marzluff, and A I Skoultchi
February 1986, Nucleic acids research,
B J Levine, and T J Liu, and W F Marzluff, and A I Skoultchi
January 2002, Molecular biology and evolution,
B J Levine, and T J Liu, and W F Marzluff, and A I Skoultchi
January 1989, Genome,
B J Levine, and T J Liu, and W F Marzluff, and A I Skoultchi
January 1982, Biochemical and biophysical research communications,
B J Levine, and T J Liu, and W F Marzluff, and A I Skoultchi
September 1986, The Biochemical journal,
B J Levine, and T J Liu, and W F Marzluff, and A I Skoultchi
January 1986, Nucleic acids research,
B J Levine, and T J Liu, and W F Marzluff, and A I Skoultchi
July 1997, Gene,
Copied contents to your clipboard!