Calcium and light adaptation in retinal rods and cones. 1988

K Nakatani, and K W Yau
Howard Hughes Medical Institute, Baltimore, Maryland 21205.

Retinal rods and cones respond to light with a membrane hyperpolarization. This hyperpolarization is mediated by an ionic conductance (the light-regulated conductance) that is kept open in darkness by cyclic GMP acting as a ligand, and which closes in the light as a result of an increase in cGMP hydrolysis triggered by illumination. Calcium ions appear to have a role in this phototransduction process: they provide negative feedback between the conductance, which is permeable to Ca2+ (refs 4, 5), and the concentration of cGMP, which is sensitive to Ca2+ (refs 6-8). This feedback down-regulates the sensitivity to light of a photoreceptor and probably contributes to the important phenomenon of light adaptation in vision. It is still not clear, however, how much of the light adaptation is actually attributable to this Ca2+ feedback. We have examined the responses of amphibian rods and cones to light with the Ca2+ feedback removed. Normally, the response of a cell to a step of light rises transiently to a peak, but rapidly relaxes to a lower level, indicative of light adaptation. When the feedback is removed, however, the relaxation of the response is completely absent; furthermore, the steady response levels at different light-step intensities are well predicted by a statistical superposition of invariant single-photon responses. We therefore conclude that the Ca2+ feedback underlies essentially all light adaptation in rods and cones.

UI MeSH Term Description Entries
D010775 Photic Stimulation Investigative technique commonly used during ELECTROENCEPHALOGRAPHY in which a series of bright light flashes or visual patterns are used to elicit brain activity. Stimulation, Photic,Visual Stimulation,Photic Stimulations,Stimulation, Visual,Stimulations, Photic,Stimulations, Visual,Visual Stimulations
D010786 Photoreceptor Cells Specialized cells that detect and transduce light. They are classified into two types based on their light reception structure, the ciliary photoreceptors and the rhabdomeric photoreceptors with MICROVILLI. Ciliary photoreceptor cells use OPSINS that activate a PHOSPHODIESTERASE phosphodiesterase cascade. Rhabdomeric photoreceptor cells use opsins that activate a PHOSPHOLIPASE C cascade. Ciliary Photoreceptor Cells,Ciliary Photoreceptors,Rhabdomeric Photoreceptor Cells,Rhabdomeric Photoreceptors,Cell, Ciliary Photoreceptor,Cell, Photoreceptor,Cell, Rhabdomeric Photoreceptor,Cells, Ciliary Photoreceptor,Cells, Photoreceptor,Cells, Rhabdomeric Photoreceptor,Ciliary Photoreceptor,Ciliary Photoreceptor Cell,Photoreceptor Cell,Photoreceptor Cell, Ciliary,Photoreceptor Cell, Rhabdomeric,Photoreceptor Cells, Ciliary,Photoreceptor Cells, Rhabdomeric,Photoreceptor, Ciliary,Photoreceptor, Rhabdomeric,Photoreceptors, Ciliary,Photoreceptors, Rhabdomeric,Rhabdomeric Photoreceptor,Rhabdomeric Photoreceptor Cell
D011930 Reaction Time The time from the onset of a stimulus until a response is observed. Response Latency,Response Speed,Response Time,Latency, Response,Reaction Times,Response Latencies,Response Times,Speed, Response,Speeds, Response
D002118 Calcium A basic element found in nearly all tissues. It is a member of the alkaline earth family of metals with the atomic symbol Ca, atomic number 20, and atomic weight 40. Calcium is the most abundant mineral in the body and combines with phosphorus to form calcium phosphate in the bones and teeth. It is essential for the normal functioning of nerves and muscles and plays a role in blood coagulation (as factor IV) and in many enzymatic processes. Coagulation Factor IV,Factor IV,Blood Coagulation Factor IV,Calcium-40,Calcium 40,Factor IV, Coagulation
D005246 Feedback A mechanism of communication within a system in that the input signal generates an output response which returns to influence the continued activity or productivity of that system. Feedbacks
D000221 Adaptation, Ocular The adjustment of the eye to variations in the intensity of light. Light adaptation is the adjustment of the eye when the light threshold is increased; DARK ADAPTATION when the light is greatly reduced. (From Cline et al., Dictionary of Visual Science, 4th ed) Light Adaptation,Adaptation, Light,Adaptations, Light,Adaptations, Ocular,Light Adaptations,Ocular Adaptation,Ocular Adaptations
D000557 Ambystoma A genus of the Ambystomatidae family. The best known species are the axolotl AMBYSTOMA MEXICANUM and the closely related tiger salamander Ambystoma tigrinum. They may retain gills and remain aquatic without developing all of the adult characteristics. However, under proper changes in the environment they metamorphose. Amblystoma,Ambystoma tigrinum,Tiger Salamander,Amblystomas,Ambystomas,Salamander, Tiger,Salamanders, Tiger,Tiger Salamanders
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia

Related Publications

K Nakatani, and K W Yau
January 1974, The Journal of general physiology,
K Nakatani, and K W Yau
October 1995, Cell calcium,
K Nakatani, and K W Yau
February 2002, The Journal of general physiology,
K Nakatani, and K W Yau
January 1974, The Journal of physiology,
K Nakatani, and K W Yau
September 2005, The Journal of physiology,
K Nakatani, and K W Yau
March 2016, eLife,
K Nakatani, and K W Yau
January 1985, Doklady Akademii nauk SSSR,
K Nakatani, and K W Yau
April 1978, Annals of the New York Academy of Sciences,
K Nakatani, and K W Yau
August 1991, Current opinion in neurobiology,
K Nakatani, and K W Yau
June 1990, The Journal of neuroscience : the official journal of the Society for Neuroscience,
Copied contents to your clipboard!