Protein turnover in tissues of the fetal rat after prolonged maternal malnutrition. 1988

J D Johnson, and T Dunham
Department of Pediatrics, University of New Mexico School of Medicine, Albuquerque 87131.

Protein turnover in fetal diaphragm, heart, liver, and brain was determined at 21 days gestation in fetal rats whose mothers had received a protein-restricted diet (6% protein) throughout gestation. This diet resulted in severe combined protein-calorie malnutrition. Fetal body weight was significantly decreased at days 19-22 gestation versus controls (27% protein diet) when pregnant animals were protein-restricted (e.g. 40% decrease in body weight at day 22 gestation versus controls). Protein synthesis was determined by intravenous injection of "massive" amounts of [3H]phenylalanine to pregnant animals and measuring free and protein-bound specific radioactivities in fetal tissues. Rate constants for protein degradation were calculated by subtracting fractional growth rate from protein synthesis. Fractional protein synthesis was reduced in diaphragm (0.26 versus 0.41 days-1), heart (0.41 versus 0.52 days-1), and liver (0.35 versus 0.89 days-1) in fetuses from malnourished mothers relative to controls. Similarly, fractional protein degradation was decreased in these fetal tissues-diaphragm (0.03 versus 0.06 days-1), heart (0.14 versus 0.18 days-1), and liver (0.25 versus 0.80 days-1). Reduced protein accretion during maternal malnutrition in these fetal tissues is secondary to decreased protein synthesis out of proportion to the concurrent reduction in protein degradation. Protein synthesis and degradation in fetal brain from malnourished mothers were not altered versus controls. These effects of malnutrition on protein turnover in fetal tissues throughout pregnancy in the rat correspond closely with the effect of protein restriction in young adult rats and the effect of protein-calorie malnutrition on whole body protein turnover in human infants.

UI MeSH Term Description Entries
D008431 Maternal-Fetal Exchange Exchange of substances between the maternal blood and the fetal blood at the PLACENTA via PLACENTAL CIRCULATION. The placental barrier excludes microbial or viral transmission. Transplacental Exposure,Exchange, Maternal-Fetal,Exposure, Transplacental,Maternal Fetal Exchange
D009748 Nutrition Disorders Disorders caused by nutritional imbalance, either overnutrition or undernutrition. Nutritional Disorders,Nutrition Disorder,Nutritional Disorder
D011247 Pregnancy The status during which female mammals carry their developing young (EMBRYOS or FETUSES) in utero before birth, beginning from FERTILIZATION to BIRTH. Gestation,Pregnancies
D011919 Rats, Inbred Strains Genetically identical individuals developed from brother and sister matings which have been carried out for twenty or more generations or by parent x offspring matings carried out with certain restrictions. This also includes animals with a long history of closed colony breeding. August Rats,Inbred Rat Strains,Inbred Strain of Rat,Inbred Strain of Rats,Inbred Strains of Rats,Rat, Inbred Strain,August Rat,Inbred Rat Strain,Inbred Strain Rat,Inbred Strain Rats,Inbred Strains Rat,Inbred Strains Rats,Rat Inbred Strain,Rat Inbred Strains,Rat Strain, Inbred,Rat Strains, Inbred,Rat, August,Rat, Inbred Strains,Rats Inbred Strain,Rats Inbred Strains,Rats, August,Rats, Inbred Strain,Strain Rat, Inbred,Strain Rats, Inbred,Strain, Inbred Rat,Strains, Inbred Rat
D001921 Brain The part of CENTRAL NERVOUS SYSTEM that is contained within the skull (CRANIUM). Arising from the NEURAL TUBE, the embryonic brain is comprised of three major parts including PROSENCEPHALON (the forebrain); MESENCEPHALON (the midbrain); and RHOMBENCEPHALON (the hindbrain). The developed brain consists of CEREBRUM; CEREBELLUM; and other structures in the BRAIN STEM. Encephalon
D005260 Female Females
D005314 Embryonic and Fetal Development Morphological and physiological development of EMBRYOS or FETUSES. Embryo and Fetal Development,Prenatal Programming,Programming, Prenatal
D005326 Fetal Proteins Proteins that are preferentially expressed or upregulated during FETAL DEVELOPMENT. Fetoprotein,Fetoproteins,Proteins, Fetal
D005333 Fetus The unborn young of a viviparous mammal, in the postembryonic period, after the major structures have been outlined. In humans, the unborn young from the end of the eighth week after CONCEPTION until BIRTH, as distinguished from the earlier EMBRYO, MAMMALIAN. Fetal Structures,Fetal Tissue,Fetuses,Mummified Fetus,Retained Fetus,Fetal Structure,Fetal Tissues,Fetus, Mummified,Fetus, Retained,Structure, Fetal,Structures, Fetal,Tissue, Fetal,Tissues, Fetal
D005865 Gestational Age The age of the conceptus, beginning from the time of FERTILIZATION. In clinical obstetrics, the gestational age is often estimated from the onset of the last MENSTRUATION which is about 2 weeks before OVULATION and fertilization. It is also estimated to begin from fertilization, estrus, coitus, or artificial insemination. Embryologic Age,Fetal Maturity, Chronologic,Chronologic Fetal Maturity,Fetal Age,Maturity, Chronologic Fetal,Age, Embryologic,Age, Fetal,Age, Gestational,Ages, Embryologic,Ages, Fetal,Ages, Gestational,Embryologic Ages,Fetal Ages,Gestational Ages

Related Publications

J D Johnson, and T Dunham
March 1980, The Journal of nutrition,
J D Johnson, and T Dunham
April 1980, American journal of obstetrics and gynecology,
J D Johnson, and T Dunham
July 1991, Current eye research,
J D Johnson, and T Dunham
January 1987, The Journal of nutrition,
J D Johnson, and T Dunham
November 1971, Toxicology and applied pharmacology,
J D Johnson, and T Dunham
January 1987, Biology of the neonate,
J D Johnson, and T Dunham
June 1967, Archives internationales de physiologie et de biochimie,
Copied contents to your clipboard!