Angiotensin II receptors in rabbit renal preglomerular vessels. 1988

G P Brown, and R C Venuto
School of Nursing, State University of New York, Buffalo 14214.

Controversy exists regarding the specific sites within the renal microcirculation affected by angiotensin II (ANG II). Under some conditions, ANG II can elicit direct vasoconstrictor responses in the preglomerular vessels and efferent arterioles. These experiments were designed to evaluate the binding of 125I-ANG II in preglomerular vessels. Arcuate and interlobular arteries, with attached proximal segments of afferent arterioles, were microdissected from rabbit renal cortexes. A membrane preparation was obtained from the pooled freshly dissected vessels and utilized in an ANG II radioreceptor assay on the same day. Binding site concentrations [N] and dissociation constants [KD] were obtained by Scatchard analyses of binding inhibition data. Specific binding was saturable and reversible. The dissociation of bound ANG II was enhanced in the presence of a nonhydrolyzable analogue of GTP. Linear Scatchard plots were obtained, indicating the presence of a single class of high-affinity binding sites. The KD and N are similar to those for ANG II receptors in extrarenal vascular tissue. The order of binding inhibition potencies of ANG analogues was [Sar1,Ile8]-ANG II much greater than [Sar1,Ala8]ANG II = ANG II = ANG III much greater than ANG I, which is consistent with in vivo observations of the effects of these analogues on renal blood flow. The binding inhibition potencies of ANG III and [Sar1,Ile8]ANG II were greater in renal compared with reported values for extrarenal vasculature and rabbit glomeruli. Furthermore, there were no differences in ANG II receptor parameters in preglomerular vessels obtained from pregnant and nonpregnant rabbits.(ABSTRACT TRUNCATED AT 250 WORDS)

UI MeSH Term Description Entries
D007678 Kidney Glomerulus A cluster of convoluted capillaries beginning at each nephric tubule in the kidney and held together by connective tissue. Glomerulus, Kidney
D007700 Kinetics The rate dynamics in chemical or physical systems.
D008833 Microcirculation The circulation of the BLOOD through the MICROVASCULAR NETWORK. Microvascular Blood Flow,Microvascular Circulation,Blood Flow, Microvascular,Circulation, Microvascular,Flow, Microvascular Blood,Microvascular Blood Flows,Microvascular Circulations
D011247 Pregnancy The status during which female mammals carry their developing young (EMBRYOS or FETUSES) in utero before birth, beginning from FERTILIZATION to BIRTH. Gestation,Pregnancies
D011817 Rabbits A burrowing plant-eating mammal with hind limbs that are longer than its fore limbs. It belongs to the family Leporidae of the order Lagomorpha, and in contrast to hares, possesses 22 instead of 24 pairs of chromosomes. Belgian Hare,New Zealand Rabbit,New Zealand Rabbits,New Zealand White Rabbit,Rabbit,Rabbit, Domestic,Chinchilla Rabbits,NZW Rabbits,New Zealand White Rabbits,Oryctolagus cuniculus,Chinchilla Rabbit,Domestic Rabbit,Domestic Rabbits,Hare, Belgian,NZW Rabbit,Rabbit, Chinchilla,Rabbit, NZW,Rabbit, New Zealand,Rabbits, Chinchilla,Rabbits, Domestic,Rabbits, NZW,Rabbits, New Zealand,Zealand Rabbit, New,Zealand Rabbits, New,cuniculus, Oryctolagus
D011945 Receptors, Angiotensin Cell surface proteins that bind ANGIOTENSINS and trigger intracellular changes influencing the behavior of cells. Angiotensin Receptor,Angiotensin Receptors,Angiotensin II Receptor,Angiotensin III Receptor,Receptor, Angiotensin II,Receptor, Angiotensin III,Receptor, Angiotensin
D005260 Female Females
D006165 Guanylyl Imidodiphosphate A non-hydrolyzable analog of GTP, in which the oxygen atom bridging the beta to the gamma phosphate is replaced by a nitrogen atom. It binds tightly to G-protein in the presence of Mg2+. The nucleotide is a potent stimulator of ADENYLYL CYCLASES. GMP-PNP,GMP-P(NH)P,Gpp(NH)p,Guanosine 5'-(Beta,Gamma-Imido)Triphosphate,Guanyl-5'-Imidodiphosphate,P(NH)PPG,Guanyl 5' Imidodiphosphate,Imidodiphosphate, Guanylyl
D000804 Angiotensin II An octapeptide that is a potent but labile vasoconstrictor. It is produced from angiotensin I after the removal of two amino acids at the C-terminal by ANGIOTENSIN CONVERTING ENZYME. The amino acid in position 5 varies in different species. To block VASOCONSTRICTION and HYPERTENSION effect of angiotensin II, patients are often treated with ACE INHIBITORS or with ANGIOTENSIN II TYPE 1 RECEPTOR BLOCKERS. Angiotensin II, Ile(5)-,Angiotensin II, Val(5)-,5-L-Isoleucine Angiotensin II,ANG-(1-8)Octapeptide,Angiotensin II, Isoleucine(5)-,Angiotensin II, Valine(5)-,Angiotensin-(1-8) Octapeptide,Isoleucine(5)-Angiotensin,Isoleucyl(5)-Angiotensin II,Valyl(5)-Angiotensin II,5 L Isoleucine Angiotensin II,Angiotensin II, 5-L-Isoleucine
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia

Related Publications

G P Brown, and R C Venuto
January 1992, Receptor,
G P Brown, and R C Venuto
December 1985, Journal of hypertension. Supplement : official journal of the International Society of Hypertension,
G P Brown, and R C Venuto
May 1996, The American journal of physiology,
G P Brown, and R C Venuto
November 1994, The American journal of physiology,
G P Brown, and R C Venuto
December 1983, Journal of hypertension. Supplement : official journal of the International Society of Hypertension,
G P Brown, and R C Venuto
July 1990, Biochimica et biophysica acta,
G P Brown, and R C Venuto
January 1993, Biochemical and biophysical research communications,
G P Brown, and R C Venuto
June 2011, American journal of physiology. Heart and circulatory physiology,
G P Brown, and R C Venuto
December 1997, Hypertension (Dallas, Tex. : 1979),
Copied contents to your clipboard!