Validation and characterization of oxycodone physical dependence in C57BL/6J mice. 2021

Moriah Carper, and Katherine M Contreras, and D Matthew Walentiny, and Patrick M Beardsley, and M Imad Damaj
Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, VA, 23298, USA.

Opioid use disorder is a growing concern in the United States. Mice were used to investigate the mechanisms involving opioid physical dependence and for evaluating medications for treating opioid use disorders. While there are many preclinical reports describing protocols for inducing physical dependence upon morphine, there are fewer preclinical reports describing more contemporary abused prescription opiates. The goal of this study was to characterize and validate a mouse model of oxycodone dependence. Male C57BL/6J mice were injected with saline or increasing doses of oxycodone (9-33 mg/kg) twice daily for 8 days. On the 9th day, mice were challenged with 1 mg/kg naloxone and observed for somatic signs. Mice were pretreated with oxycodone (17, 33, or 75 mg/kg) prior to withdrawal to determine if it could attenuate somatic withdrawal signs. Additional mouse groups were pretreated with 1 mg/kg clonidine. Lastly, we measured somatic signs for 6, 24, and 48 h post-withdrawal during spontaneous and precipitated withdrawal. Pretreating with oxycodone or clonidine dose-dependently prevented the emergence of withdrawal signs. Mice chronically treated with oxycodone exhibited more withdrawal signs than vehicle at 24 h after the final injection during spontaneous withdrawal. In contrast, mice that received repeated naloxone challenges showed peak withdrawal signs at 6 h, and withdrawal signs were significantly greater at all time points compared to vehicle. Reversal of withdrawal effects by positive controls, and establishing spontaneous and precipitated withdrawal paradigms, serve as validation of this model and provide a means to examine novel therapeutics to treat opioid withdrawal.

UI MeSH Term Description Entries
D008297 Male Males
D008810 Mice, Inbred C57BL One of the first INBRED MOUSE STRAINS to be sequenced. This strain is commonly used as genetic background for transgenic mouse models. Refractory to many tumors, this strain is also preferred model for studying role of genetic variations in development of diseases. Mice, C57BL,Mouse, C57BL,Mouse, Inbred C57BL,C57BL Mice,C57BL Mice, Inbred,C57BL Mouse,C57BL Mouse, Inbred,Inbred C57BL Mice,Inbred C57BL Mouse
D009270 Naloxone A specific opiate antagonist that has no agonist activity. It is a competitive antagonist at mu, delta, and kappa opioid receptors. MRZ 2593-Br,MRZ-2593,Nalone,Naloxon Curamed,Naloxon-Ratiopharm,Naloxone Abello,Naloxone Hydrobromide,Naloxone Hydrochloride,Naloxone Hydrochloride Dihydride,Naloxone Hydrochloride, (5 beta,9 alpha,13 alpha,14 alpha)-Isomer,Naloxone, (5 beta,9 alpha,13 alpha,14 alpha)-Isomer,Narcan,Narcanti,Abello, Naloxone,Curamed, Naloxon,Dihydride, Naloxone Hydrochloride,Hydrobromide, Naloxone,Hydrochloride Dihydride, Naloxone,Hydrochloride, Naloxone,MRZ 2593,MRZ 2593 Br,MRZ 2593Br,MRZ2593,Naloxon Ratiopharm
D009292 Narcotic Antagonists Agents inhibiting the effect of narcotics on the central nervous system. Competitive Opioid Antagonist,Narcotic Antagonist,Opioid Antagonist,Opioid Antagonists,Opioid Receptor Antagonist,Opioid Reversal Agent,Competitive Opioid Antagonists,Opioid Receptor Antagonists,Opioid Reversal Agents,Agent, Opioid Reversal,Agents, Opioid Reversal,Antagonist, Competitive Opioid,Antagonist, Narcotic,Antagonist, Opioid,Antagonist, Opioid Receptor,Antagonists, Competitive Opioid,Antagonists, Narcotic,Antagonists, Opioid,Antagonists, Opioid Receptor,Opioid Antagonist, Competitive,Opioid Antagonists, Competitive,Receptor Antagonist, Opioid,Receptor Antagonists, Opioid,Reversal Agent, Opioid,Reversal Agents, Opioid
D009293 Opioid-Related Disorders Disorders related to or resulting from abuse or misuse of OPIOIDS. Opiate Addiction,Opiate Dependence,Opioid Misuse,Opioid Use Disorder,Prescription Opioid Abuse,Prescription Opioid Misuse,Addiction, Opioid,Dependence, Opioid,Opiate Abuse,Opioid Abuse,Opioid Addiction,Opioid Dependence,Abuse, Opiate,Abuse, Opioid,Abuse, Prescription Opioid,Addiction, Opiate,Dependence, Opiate,Disorder, Opioid Use,Misuse, Opioid,Misuse, Prescription Opioid,Opiate Abuses,Opioid Abuse, Prescription,Opioid Abuses,Opioid Addictions,Opioid Dependences,Opioid Misuses,Opioid Related Disorders,Opioid Use Disorders,Opioid-Related Disorder,Prescription Opioid Abuses,Prescription Opioid Misuses
D010098 Oxycodone A semisynthetic derivative of CODEINE. Dihydrohydroxycodeinone,Oxiconum,Oxycodeinon,Dihydrone,Dinarkon,Eucodal,Oxycodone Hydrochloride,Oxycone,Oxycontin,Pancodine,Theocodin
D003000 Clonidine An imidazoline sympatholytic agent that stimulates ALPHA-2 ADRENERGIC RECEPTORS and central IMIDAZOLINE RECEPTORS. It is commonly used in the management of HYPERTENSION. Catapres,Catapresan,Catapressan,Chlophazolin,Clofelin,Clofenil,Clonidine Dihydrochloride,Clonidine Hydrochloride,Clonidine Monohydrobromide,Clonidine Monohydrochloride,Clopheline,Dixarit,Gemiton,Hemiton,Isoglaucon,Klofelin,Klofenil,M-5041T,ST-155,Dihydrochloride, Clonidine,Hydrochloride, Clonidine,M 5041T,M5041T,Monohydrobromide, Clonidine,Monohydrochloride, Clonidine,ST 155,ST155
D004195 Disease Models, Animal Naturally-occurring or experimentally-induced animal diseases with pathological processes analogous to human diseases. Animal Disease Model,Animal Disease Models,Disease Model, Animal
D004305 Dose-Response Relationship, Drug The relationship between the dose of an administered drug and the response of the organism to the drug. Dose Response Relationship, Drug,Dose-Response Relationships, Drug,Drug Dose-Response Relationship,Drug Dose-Response Relationships,Relationship, Drug Dose-Response,Relationships, Drug Dose-Response
D000700 Analgesics Compounds capable of relieving pain without the loss of CONSCIOUSNESS. Analgesic,Anodynes,Antinociceptive Agents,Analgesic Agents,Analgesic Drugs,Agents, Analgesic,Agents, Antinociceptive,Drugs, Analgesic

Related Publications

Moriah Carper, and Katherine M Contreras, and D Matthew Walentiny, and Patrick M Beardsley, and M Imad Damaj
October 2016, European journal of pharmacology,
Moriah Carper, and Katherine M Contreras, and D Matthew Walentiny, and Patrick M Beardsley, and M Imad Damaj
March 1998, International journal of molecular medicine,
Moriah Carper, and Katherine M Contreras, and D Matthew Walentiny, and Patrick M Beardsley, and M Imad Damaj
January 2023, PloS one,
Moriah Carper, and Katherine M Contreras, and D Matthew Walentiny, and Patrick M Beardsley, and M Imad Damaj
October 2020, Neuropharmacology,
Moriah Carper, and Katherine M Contreras, and D Matthew Walentiny, and Patrick M Beardsley, and M Imad Damaj
December 2016, Neuropharmacology,
Moriah Carper, and Katherine M Contreras, and D Matthew Walentiny, and Patrick M Beardsley, and M Imad Damaj
June 2018, Aging,
Moriah Carper, and Katherine M Contreras, and D Matthew Walentiny, and Patrick M Beardsley, and M Imad Damaj
January 2021, Life science alliance,
Moriah Carper, and Katherine M Contreras, and D Matthew Walentiny, and Patrick M Beardsley, and M Imad Damaj
November 2006, Behavioural brain research,
Moriah Carper, and Katherine M Contreras, and D Matthew Walentiny, and Patrick M Beardsley, and M Imad Damaj
February 2012, Journal of food science,
Moriah Carper, and Katherine M Contreras, and D Matthew Walentiny, and Patrick M Beardsley, and M Imad Damaj
October 2013, Experimental biology and medicine (Maywood, N.J.),
Copied contents to your clipboard!