Nuclear magnetic resonance relaxation studies of the interaction of ligands with the monomer and tetramer forms of formyltetrahydrofolate synthetase. 1988

C H Yeh, and D A Hanna, and G W Everett, and R H Himes
Department of Biochemistry, University of Kansas, Lawrence 66045.

Previous work using n.m.r. spectroscopy to investigate the binding between formyltetrahydrofolate synthetase and its ligands was done using the catalytically active tetrameric form of the enzyme. By removal of specific monovalent cations the tetramer dissociates to four identical, catalytically inactive monomers, which are capable of binding nucleotides with affinities similar to those obtained with the tetramer. In the studies reported here, we examined the interaction of metal-nucleotide, formate and monovalent cations with the monomer using n.m.r. relaxation measurements. We were able to demonstrate that formate binds to the monomer. The spin-lattice relaxation rate (1/T1) of the formate carbon in the monomer.M2+.ADP.formate complex is enhanced when Mg2+ is replaced by Mn2+. By assuming that the exchange of formate is not rate-limiting and that tau c of the monomer is the same as that of the tetramer, the distance between the Mn2+ and the formate carbon was calculated and found to be similar in the monomer and tetramer complexes. The spin-lattice relaxation rates of [13C]trimethylammonium ion (an inactive monovalent cation), [13C]methylammonium and [15N]ammonium ions (both active monovalent cations), were measured in the presence of tetramer, MnADP and formate. The relaxation rates of methylammonium and ammonium ions were enhanced under these conditions whereas the relaxation rate of trimethylammonium ion was not. The results indicate that the active monovalent cations bind near the MnADP binding site. A distance from the Mn2+ to the ammonium nitrogen of between 0.5 and 0.6 nm was calculated.

UI MeSH Term Description Entries
D008024 Ligands A molecule that binds to another molecule, used especially to refer to a small molecule that binds specifically to a larger molecule, e.g., an antigen binding to an antibody, a hormone or neurotransmitter binding to a receptor, or a substrate or allosteric effector binding to an enzyme. Ligands are also molecules that donate or accept a pair of electrons to form a coordinate covalent bond with the central metal atom of a coordination complex. (From Dorland, 27th ed) Ligand
D008025 Ligases A class of enzymes that catalyze the formation of a bond between two substrate molecules, coupled with the hydrolysis of a pyrophosphate bond in ATP or a similar energy donor. (Dorland, 28th ed) EC 6. Ligase,Synthetases,Synthetase
D008744 Methylamines Derivatives of methylamine (the structural formula CH3NH2).
D009682 Magnetic Resonance Spectroscopy Spectroscopic method of measuring the magnetic moment of elementary particles such as atomic nuclei, protons or electrons. It is employed in clinical applications such as NMR Tomography (MAGNETIC RESONANCE IMAGING). In Vivo NMR Spectroscopy,MR Spectroscopy,Magnetic Resonance,NMR Spectroscopy,NMR Spectroscopy, In Vivo,Nuclear Magnetic Resonance,Spectroscopy, Magnetic Resonance,Spectroscopy, NMR,Spectroscopy, Nuclear Magnetic Resonance,Magnetic Resonance Spectroscopies,Magnetic Resonance, Nuclear,NMR Spectroscopies,Resonance Spectroscopy, Magnetic,Resonance, Magnetic,Resonance, Nuclear Magnetic,Spectroscopies, NMR,Spectroscopy, MR
D005561 Formates Derivatives of formic acids. Included under this heading are a broad variety of acid forms, salts, esters, and amides that are formed with a single carbon carboxy group. Formic Acids,Acids, Formic
D005574 Formate-Tetrahydrofolate Ligase A carbon-nitrogen ligase that catalyzes the formation of 10-formyltetrahydrofolate from formate and tetrahydrofolate in the presence of ATP. In higher eukaryotes the enzyme also contains METHYLENETETRAHYDROFOLATE DEHYDROGENASE (NADP+) and METHENYLTETRAHYDROFOLATE CYCLOHYDROLASE activity. Tetrahydrofolate Formylase,Formyltetrahydrofolate Synthetase,Formate Tetrahydrofolate Ligase,Formylase, Tetrahydrofolate,Ligase, Formate-Tetrahydrofolate,Synthetase, Formyltetrahydrofolate
D000641 Ammonia A colorless alkaline gas. It is formed in the body during decomposition of organic materials during a large number of metabolically important reactions. Note that the aqueous form of ammonia is referred to as AMMONIUM HYDROXIDE.
D001665 Binding Sites The parts of a macromolecule that directly participate in its specific combination with another molecule. Combining Site,Binding Site,Combining Sites,Site, Binding,Site, Combining,Sites, Binding,Sites, Combining
D046911 Macromolecular Substances Compounds and molecular complexes that consist of very large numbers of atoms and are generally over 500 kDa in size. In biological systems macromolecular substances usually can be visualized using ELECTRON MICROSCOPY and are distinguished from ORGANELLES by the lack of a membrane structure. Macromolecular Complexes,Macromolecular Compounds,Macromolecular Compounds and Complexes,Complexes, Macromolecular,Compounds, Macromolecular,Substances, Macromolecular

Related Publications

C H Yeh, and D A Hanna, and G W Everett, and R H Himes
February 1983, Biochemistry,
C H Yeh, and D A Hanna, and G W Everett, and R H Himes
August 1967, The Journal of biological chemistry,
C H Yeh, and D A Hanna, and G W Everett, and R H Himes
March 1969, Proceedings of the National Academy of Sciences of the United States of America,
C H Yeh, and D A Hanna, and G W Everett, and R H Himes
December 1974, Biochemistry,
C H Yeh, and D A Hanna, and G W Everett, and R H Himes
February 1974, The Journal of biological chemistry,
C H Yeh, and D A Hanna, and G W Everett, and R H Himes
July 1983, Biochemistry,
C H Yeh, and D A Hanna, and G W Everett, and R H Himes
November 1974, Biochemistry,
C H Yeh, and D A Hanna, and G W Everett, and R H Himes
May 1968, Journal of the American Chemical Society,
Copied contents to your clipboard!