Axonal neurofilaments differ in composition and morphology from those in the soma of the squid stellate ganglion. 1988

M Tytell, and R V Zackroff, and W D Hill
Marine Biological Laboratory, Woods Hole, Massachusetts.

Triton X-100 insoluble neurofilament (NF) fractions were obtained from two parts of the stellate ganglion and the main giant axon. These were analyzed by one- and two-dimensional gradient polyacrylamide gel electrophoresis, cyclic assembly and disassembly, and electron microscopy. The NF fractions from the ganglion cell bodies (GCB) and from the part of the ganglion mainly consisting of axon initial segments (GIS) were of similar composition; neither contained detectable amounts of the 220 kda and high molecular weight (greater than 400 kda) NF subunits that were prominent in the axonal NF fraction. However, the GCB and GIS did contain large quantities of a set of 65 kda polypeptides that were minor constituents of the axonal NF fraction. The 65 kda-containing NF fraction from the ganglion could be cyclically disassembled and reassembled, but only under low salt conditions, in contrast to the high salt conditions used to cycle axonal NFs. A comparison of the peptide map of the 65 kda polypeptides with that of the 60 kda axonal NF subunit showed them to be different. These biochemical differences between the ganglionic and axonal NF fractions correlated with morphologic distinctions: ganglionic NFs were relatively smooth surfaced, whereas axonal NFs had long sidearms. Such observations support the hypothesis that the NF cytoskeleton of the neuron soma is different from that of the axon. Furthermore, the change from the somal form to the axonal form of NFs appears to occur in the region where the axon initial segment increases in diameter to become the axon proper.

UI MeSH Term Description Entries
D007382 Intermediate Filaments Cytoplasmic filaments intermediate in diameter (about 10 nanometers) between the microfilaments and the microtubules. They may be composed of any of a number of different proteins and form a ring around the cell nucleus. Tonofilaments,Neurofilaments,Filament, Intermediate,Filaments, Intermediate,Intermediate Filament,Neurofilament,Tonofilament
D011092 Polyethylene Glycols Polymers of ETHYLENE OXIDE and water, and their ethers. They vary in consistency from liquid to solid depending on the molecular weight indicated by a number following the name. They are used as SURFACTANTS, dispersing agents, solvents, ointment and suppository bases, vehicles, and tablet excipients. Some specific groups are NONOXYNOLS, OCTOXYNOLS, and POLOXAMERS. Macrogols,Polyoxyethylenes,Carbowax,Macrogol,Polyethylene Glycol,Polyethylene Oxide,Polyethyleneoxide,Polyglycol,Glycol, Polyethylene,Glycols, Polyethylene,Oxide, Polyethylene,Oxides, Polyethylene,Polyethylene Oxides,Polyethyleneoxides,Polyglycols,Polyoxyethylene
D003598 Cytoskeletal Proteins Major constituent of the cytoskeleton found in the cytoplasm of eukaryotic cells. They form a flexible framework for the cell, provide attachment points for organelles and formed bodies, and make communication between parts of the cell possible. Proteins, Cytoskeletal
D003599 Cytoskeleton The network of filaments, tubules, and interconnecting filamentous bridges which give shape, structure, and organization to the cytoplasm. Cytoplasmic Filaments,Cytoskeletal Filaments,Microtrabecular Lattice,Cytoplasmic Filament,Cytoskeletal Filament,Cytoskeletons,Filament, Cytoplasmic,Filament, Cytoskeletal,Filaments, Cytoplasmic,Filaments, Cytoskeletal,Lattice, Microtrabecular,Lattices, Microtrabecular,Microtrabecular Lattices
D003902 Detergents Purifying or cleansing agents, usually salts of long-chain aliphatic bases or acids, that exert cleansing (oil-dissolving) and antimicrobial effects through a surface action that depends on possessing both hydrophilic and hydrophobic properties. Cleansing Agents,Detergent Pods,Laundry Detergent Pods,Laundry Pods,Syndet,Synthetic Detergent,Agent, Cleansing,Agents, Cleansing,Cleansing Agent,Detergent,Detergent Pod,Detergent Pod, Laundry,Detergent Pods, Laundry,Detergent, Synthetic,Detergents, Synthetic,Laundry Detergent Pod,Laundry Pod,Pod, Detergent,Pod, Laundry,Pod, Laundry Detergent,Pods, Detergent,Pods, Laundry,Pods, Laundry Detergent,Synthetic Detergents
D004591 Electrophoresis, Polyacrylamide Gel Electrophoresis in which a polyacrylamide gel is used as the diffusion medium. Polyacrylamide Gel Electrophoresis,SDS-PAGE,Sodium Dodecyl Sulfate-PAGE,Gel Electrophoresis, Polyacrylamide,SDS PAGE,Sodium Dodecyl Sulfate PAGE,Sodium Dodecyl Sulfate-PAGEs
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001369 Axons Nerve fibers that are capable of rapidly conducting impulses away from the neuron cell body. Axon
D013233 Stellate Ganglion A paravertebral sympathetic ganglion formed by the fusion of the inferior cervical and first thoracic ganglia. Cervicothoracic Ganglion,Cervicothoracic Ganglia,Stellate Ganglia,Ganglia, Cervicothoracic,Ganglia, Stellate,Ganglias, Stellate,Ganglion, Cervicothoracic,Ganglion, Stellate,Stellate Ganglias
D049832 Decapodiformes A superorder of CEPHALOPODS comprised of squid, cuttlefish, and their relatives. Their distinguishing feature is the modification of their fourth pair of arms into tentacles, resulting in 10 limbs. Cuttlefish,Illex,Sepiidae,Squid,Todarodes,Cuttlefishs,Decapodiforme,Illices,Squids,Todarode

Related Publications

M Tytell, and R V Zackroff, and W D Hill
January 1980, Proceedings of the National Academy of Sciences of the United States of America,
M Tytell, and R V Zackroff, and W D Hill
February 1990, Journal of neuroscience research,
M Tytell, and R V Zackroff, and W D Hill
September 1990, The Journal of experimental biology,
M Tytell, and R V Zackroff, and W D Hill
July 1987, The Journal of neuroscience : the official journal of the Society for Neuroscience,
M Tytell, and R V Zackroff, and W D Hill
June 1996, The Journal of cell biology,
M Tytell, and R V Zackroff, and W D Hill
June 1983, Journal of neurology, neurosurgery, and psychiatry,
M Tytell, and R V Zackroff, and W D Hill
August 1970, Nature,
M Tytell, and R V Zackroff, and W D Hill
September 1978, Proceedings of the Royal Society of London. Series B, Biological sciences,
M Tytell, and R V Zackroff, and W D Hill
July 1948, Journal of neurophysiology,
Copied contents to your clipboard!