Epileptiform discharges induced by altering extracellular potassium and calcium in the rat hippocampal slice. 1988

J L Stringer, and E W Lothman
Department of Neurology, University of Virginia Medical Center, Charlottesville 22908.

During and after intense neuronal activity the concentration of extracellular potassium ([K+]o) increases while the concentration of calcium ([Ca2+]o) decreases. The present study examined the effect of increased [K+]o alone, and with a parallel decrease in [Ca2+]o, on overall excitability, long-term potentiation (LTP), and the appearance of epileptiform discharges. [K+]o and [Ca2+]o were varied over the range in which they fluctuate in vivo. Hippocampal slices were first equilibrated in a control artificial CSF containing 3.1 mM K+ and 1.5 mM Ca2+ and then reequilibrated in an identical solution except that the K+ was increased to 3.55, 4, 5, 6, or 8 mM with and without a decrease in Ca2+ to 1.0 mM. Raising [K+]o caused a leftward shift of input-output curves. Lowering [Ca2+]o to 1.0 mM had no effect on the ability of [K+]o to shift the input-output curve to the left. LTP was not changed by increasing [K+]o. Lowering [Ca2+]o to 1.0 mM blocked LTP and increasing the [K+]o did not overcome this blockade. When [K+]o alone was altered, the [K+]oS at which epileptiform bursts occurred 50% of the time were 5.6 and 7.6 mM for stimulus-locked and spontaneous bursting, respectively. The combination of decreased [Ca2+]o and increased [K+]o made slices considerably more prone to epileptiform activity. In 1.0 mM [Ca2+]o, the [K+]o at which 50% of the slices showed stimulus-locked bursting was decreased to 3.6 mM while that for spontaneous discharges was 5.4 mM. The sensitivity of hippocampal slices to [K+]o and [Ca2+]o, and the synergistic actions of alterations of these ions, indicates that even small changes in the aggregate extracellular ionic milieu may be important in epileptogenesis.

UI MeSH Term Description Entries
D009994 Osmolar Concentration The concentration of osmotically active particles in solution expressed in terms of osmoles of solute per liter of solution. Osmolality is expressed in terms of osmoles of solute per kilogram of solvent. Ionic Strength,Osmolality,Osmolarity,Concentration, Osmolar,Concentrations, Osmolar,Ionic Strengths,Osmolalities,Osmolar Concentrations,Osmolarities,Strength, Ionic,Strengths, Ionic
D011188 Potassium An element in the alkali group of metals with an atomic symbol K, atomic number 19, and atomic weight 39.10. It is the chief cation in the intracellular fluid of muscle and other cells. Potassium ion is a strong electrolyte that plays a significant role in the regulation of fluid volume and maintenance of the WATER-ELECTROLYTE BALANCE.
D002118 Calcium A basic element found in nearly all tissues. It is a member of the alkaline earth family of metals with the atomic symbol Ca, atomic number 20, and atomic weight 40. Calcium is the most abundant mineral in the body and combines with phosphorus to form calcium phosphate in the bones and teeth. It is essential for the normal functioning of nerves and muscles and plays a role in blood coagulation (as factor IV) and in many enzymatic processes. Coagulation Factor IV,Factor IV,Blood Coagulation Factor IV,Calcium-40,Calcium 40,Factor IV, Coagulation
D004558 Electric Stimulation Use of electric potential or currents to elicit biological responses. Stimulation, Electric,Electrical Stimulation,Electric Stimulations,Electrical Stimulations,Stimulation, Electrical,Stimulations, Electric,Stimulations, Electrical
D004827 Epilepsy A disorder characterized by recurrent episodes of paroxysmal brain dysfunction due to a sudden, disorderly, and excessive neuronal discharge. Epilepsy classification systems are generally based upon: (1) clinical features of the seizure episodes (e.g., motor seizure), (2) etiology (e.g., post-traumatic), (3) anatomic site of seizure origin (e.g., frontal lobe seizure), (4) tendency to spread to other structures in the brain, and (5) temporal patterns (e.g., nocturnal epilepsy). (From Adams et al., Principles of Neurology, 6th ed, p313) Aura,Awakening Epilepsy,Seizure Disorder,Epilepsy, Cryptogenic,Auras,Cryptogenic Epilepsies,Cryptogenic Epilepsy,Epilepsies,Epilepsies, Cryptogenic,Epilepsy, Awakening,Seizure Disorders
D005110 Extracellular Space Interstitial space between cells, occupied by INTERSTITIAL FLUID as well as amorphous and fibrous substances. For organisms with a CELL WALL, the extracellular space includes everything outside of the CELL MEMBRANE including the PERIPLASM and the cell wall. Intercellular Space,Extracellular Spaces,Intercellular Spaces,Space, Extracellular,Space, Intercellular,Spaces, Extracellular,Spaces, Intercellular
D006624 Hippocampus A curved elevation of GRAY MATTER extending the entire length of the floor of the TEMPORAL HORN of the LATERAL VENTRICLE (see also TEMPORAL LOBE). The hippocampus proper, subiculum, and DENTATE GYRUS constitute the hippocampal formation. Sometimes authors include the ENTORHINAL CORTEX in the hippocampal formation. Ammon Horn,Cornu Ammonis,Hippocampal Formation,Subiculum,Ammon's Horn,Hippocampus Proper,Ammons Horn,Formation, Hippocampal,Formations, Hippocampal,Hippocampal Formations,Hippocampus Propers,Horn, Ammon,Horn, Ammon's,Proper, Hippocampus,Propers, Hippocampus,Subiculums
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D051381 Rats The common name for the genus Rattus. Rattus,Rats, Laboratory,Rats, Norway,Rattus norvegicus,Laboratory Rat,Laboratory Rats,Norway Rat,Norway Rats,Rat,Rat, Laboratory,Rat, Norway,norvegicus, Rattus
D066298 In Vitro Techniques Methods to study reactions or processes taking place in an artificial environment outside the living organism. In Vitro Test,In Vitro Testing,In Vitro Tests,In Vitro as Topic,In Vitro,In Vitro Technique,In Vitro Testings,Technique, In Vitro,Techniques, In Vitro,Test, In Vitro,Testing, In Vitro,Testings, In Vitro,Tests, In Vitro,Vitro Testing, In

Related Publications

J L Stringer, and E W Lothman
March 1998, Biological & pharmaceutical bulletin,
J L Stringer, and E W Lothman
April 2005, The Journal of neuroscience : the official journal of the Society for Neuroscience,
Copied contents to your clipboard!