Specific binding of peanut agglutinin and soybean agglutinin to chondroitinase ABC-digested cartilage proteoglycans: histochemical, ultrastructural cytochemical, and biochemical characterization. 1988

M Takagi, and I Saito, and F Kuwata, and K Otsuka
Department of Anatomy, Nihon University School of Dentistry, Tokyo, Japan.

The binding of peanut agglutinin (PNA) and soybean agglutinin (SBA) to cartilage proteoglycans was investigated by histochemical, ultrastructural cytochemical, and biochemical methods. Following aldehyde fixation, specimens of rat epiphyseal cartilage were examined by horseradish peroxidase-labelled lectin cytochemistry with and without prior digestion in chondroitinase ABC. At the light microscope level neither PNA nor SBA exhibited any affinity for cartilage matrix, but became strongly bound following chondroitinase treatment. Similarly, at the ultrastructural level, extracellular matrix granules, presumed to be proteoglycan monomer(s), lacked PNA affinity in undigested specimens, and stained very weakly with SBA. Both PNA and SBA weakly to moderately stained the trans cisternae of the Golgi-flattened cisternae in chondrocytes. The chondrocyte plasmalemma lacked PNA staining, but reacted weakly with SBA. Following chondroitinase digestion, PNA and SBA stained matrix granules, and the cell surface of chondrocytes intensely, whereas the Golgi trans cisternae, the Golgi-derived vacuoles, and multivesicular bodies demonstrated weak to moderate reactivity. Proteoglycan aggregates purified from rat chondrosarcoma and bovine nasal cartilage bound PNA and SBA avidly after digestion with chondroitinase. Undigested proteoglycans lacked affinity for PNA and reacted very weakly with SBA. These results indicate that both PNA and SBA specifically react with chondroitinase-modified oligosaccharide(s) bound to core proteins of cartilage proteoglycans. This provided a specific histochemical and ultrastructural cytochemical procedure for localizing chondroitin sulphate-containing proteoglycans.

UI MeSH Term Description Entries
D008297 Male Males
D008854 Microscopy, Electron Microscopy using an electron beam, instead of light, to visualize the sample, thereby allowing much greater magnification. The interactions of ELECTRONS with specimens are used to provide information about the fine structure of that specimen. In TRANSMISSION ELECTRON MICROSCOPY the reactions of the electrons that are transmitted through the specimen are imaged. In SCANNING ELECTRON MICROSCOPY an electron beam falls at a non-normal angle on the specimen and the image is derived from the reactions occurring above the plane of the specimen. Electron Microscopy
D011509 Proteoglycans Glycoproteins which have a very high polysaccharide content. Proteoglycan,Proteoglycan Type H
D011919 Rats, Inbred Strains Genetically identical individuals developed from brother and sister matings which have been carried out for twenty or more generations or by parent x offspring matings carried out with certain restrictions. This also includes animals with a long history of closed colony breeding. August Rats,Inbred Rat Strains,Inbred Strain of Rat,Inbred Strain of Rats,Inbred Strains of Rats,Rat, Inbred Strain,August Rat,Inbred Rat Strain,Inbred Strain Rat,Inbred Strain Rats,Inbred Strains Rat,Inbred Strains Rats,Rat Inbred Strain,Rat Inbred Strains,Rat Strain, Inbred,Rat Strains, Inbred,Rat, August,Rat, Inbred Strains,Rats Inbred Strain,Rats Inbred Strains,Rats, August,Rats, Inbred Strain,Strain Rat, Inbred,Strain Rats, Inbred,Strain, Inbred Rat,Strains, Inbred Rat
D002808 Chondroitin Lyases Enzymes which catalyze the elimination of delta-4,5-D-glucuronate residues from polysaccharides containing 1,4-beta-hexosaminyl and 1,3-beta-D-glucuronosyl or 1,3-alpha-L-iduronosyl linkages thereby bringing about depolymerization. EC 4.2.2.4 acts on chondroitin sulfate A and C as well as on dermatan sulfate and slowly on hyaluronate. EC 4.2.2.5 acts on chondroitin sulfate A and C. Chondroitin AC Lyase,Chondroitin B Lyase,Chondroitin Eliminase,Chondroitin Sulfate Lyase,Chondroitinase-AC II,Chondroitinase AC II,Eliminase, Chondroitin,Lyase, Chondroitin AC,Lyase, Chondroitin B,Lyase, Chondroitin Sulfate,Lyases, Chondroitin,Sulfate Lyase, Chondroitin
D002810 Chondroitinases and Chondroitin Lyases Enzymes which catalyze the elimination of glucuronate residues from chondroitin A, B, and C or which catalyze the hydrolysis of sulfate groups of the 2-acetamido-2-deoxy-D-galactose 6-sulfate units of chondroitin sulfate. EC 4.2.2.-. Chondroitinase,Chondroitin-4-Sulfate Depolymerase,Chondroitinases,Chondroitin 4 Sulfate Depolymerase,Depolymerase, Chondroitin-4-Sulfate
D006132 Growth Plate The area between the EPIPHYSIS and the DIAPHYSIS within which bone growth occurs. Cartilage, Epiphyseal,Epiphyseal Cartilage,Epiphyseal Plate,Cartilages, Epiphyseal,Epiphyseal Cartilages,Epiphyseal Plates,Growth Plates,Plate, Epiphyseal,Plate, Growth,Plates, Epiphyseal,Plates, Growth
D006651 Histocytochemistry Study of intracellular distribution of chemicals, reaction sites, enzymes, etc., by means of staining reactions, radioactive isotope uptake, selective metal distribution in electron microscopy, or other methods. Cytochemistry
D006735 Horseradish Peroxidase An enzyme isolated from horseradish which is able to act as an antigen. It is frequently used as a histochemical tracer for light and electron microscopy. Its antigenicity has permitted its use as a combined antigen and marker in experimental immunology. Alpha-Peroxidase,Ferrihorseradish Peroxidase,Horseradish Peroxidase II,Horseradish Peroxidase III,Alpha Peroxidase,II, Horseradish Peroxidase,III, Horseradish Peroxidase,Peroxidase II, Horseradish,Peroxidase III, Horseradish,Peroxidase, Ferrihorseradish,Peroxidase, Horseradish
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia

Related Publications

M Takagi, and I Saito, and F Kuwata, and K Otsuka
September 2005, The Biochemical journal,
M Takagi, and I Saito, and F Kuwata, and K Otsuka
July 1986, The Journal of comparative neurology,
M Takagi, and I Saito, and F Kuwata, and K Otsuka
February 1980, Archives of biochemistry and biophysics,
M Takagi, and I Saito, and F Kuwata, and K Otsuka
September 1978, The Histochemical journal,
M Takagi, and I Saito, and F Kuwata, and K Otsuka
January 2000, Clinical orthopaedics and related research,
M Takagi, and I Saito, and F Kuwata, and K Otsuka
January 1988, The journal of histochemistry and cytochemistry : official journal of the Histochemistry Society,
M Takagi, and I Saito, and F Kuwata, and K Otsuka
January 2009, The Journal of biological chemistry,
M Takagi, and I Saito, and F Kuwata, and K Otsuka
January 1983, The journal of histochemistry and cytochemistry : official journal of the Histochemistry Society,
M Takagi, and I Saito, and F Kuwata, and K Otsuka
August 1986, Archives of pathology & laboratory medicine,
Copied contents to your clipboard!