ATP synthesis kinetics and mitochondrial function in the postischemic myocardium as studied by 31P NMR. 1988

E Y Sako, and P B Kingsley-Hickman, and A H From, and J E Foker, and K Ugurbil
Department of Biochemistry, University of Minnesota, Navarre 55392.

The effects of ischemia on mitochondrial function and the unidirectional rate of ATP synthesis (Pi----ATP rate) were studied using a Langendorff-perfused heart preparation and 31P NMR spectroscopy. There was significant postischemic depression of mechanical function assessed as the heart rate pressure product, and the myocardial oxygen consumption rate at a given rate pressure product was elevated. Experiments performed on glucose- and pyruvate-perfused hearts demonstrated the presence of a large contribution to the unidirectional Pi----ATP rate catalyzed by glyceraldehyde-3-phosphate dehydrogenase and phosphoglycerate kinase. This rate was much greater than the maximal glucose utilization rate in the myocardium, demonstrating that the glyceraldehyde-3-phosphate dehydrogenase/phosphoglycerate kinase reactions are near equilibrium both before and after ischemia. In the pyruvate-perfused postischemic hearts, the glycolytic contribution was eliminated and the net rate of ATP synthesis by oxidative phosphorylation was measurable. Despite the reduced mechanical function and increased myocardial oxygen consumption rate, the ratio of the net rate of ATP synthesis by oxidative phosphorylation to oxygen consumption rate (the P:O ratio) was not altered subsequent to ischemia (2.34 +/- 0.12 and 2.36 +/- 0.09 in normal and postischemic hearts, respectively). Therefore, mitochondrial uncoupling cannot be the cause of postischemic depression in mechanical function; instead, the data suggest the existence of ischemia-induced inefficiency in ATP utilization.

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D008929 Mitochondria, Heart The mitochondria of the myocardium. Heart Mitochondria,Myocardial Mitochondria,Mitochondrion, Heart,Heart Mitochondrion,Mitochondria, Myocardial
D009206 Myocardium The muscle tissue of the HEART. It is composed of striated, involuntary muscle cells (MYOCYTES, CARDIAC) connected to form the contractile pump to generate blood flow. Muscle, Cardiac,Muscle, Heart,Cardiac Muscle,Myocardia,Cardiac Muscles,Heart Muscle,Heart Muscles,Muscles, Cardiac,Muscles, Heart
D009682 Magnetic Resonance Spectroscopy Spectroscopic method of measuring the magnetic moment of elementary particles such as atomic nuclei, protons or electrons. It is employed in clinical applications such as NMR Tomography (MAGNETIC RESONANCE IMAGING). In Vivo NMR Spectroscopy,MR Spectroscopy,Magnetic Resonance,NMR Spectroscopy,NMR Spectroscopy, In Vivo,Nuclear Magnetic Resonance,Spectroscopy, Magnetic Resonance,Spectroscopy, NMR,Spectroscopy, Nuclear Magnetic Resonance,Magnetic Resonance Spectroscopies,Magnetic Resonance, Nuclear,NMR Spectroscopies,Resonance Spectroscopy, Magnetic,Resonance, Magnetic,Resonance, Nuclear Magnetic,Spectroscopies, NMR,Spectroscopy, MR
D010085 Oxidative Phosphorylation Electron transfer through the cytochrome system liberating free energy which is transformed into high-energy phosphate bonds. Phosphorylation, Oxidative,Oxidative Phosphorylations,Phosphorylations, Oxidative
D010101 Oxygen Consumption The rate at which oxygen is used by a tissue; microliters of oxygen STPD used per milligram of tissue per hour; the rate at which oxygen enters the blood from alveolar gas, equal in the steady state to the consumption of oxygen by tissue metabolism throughout the body. (Stedman, 25th ed, p346) Consumption, Oxygen,Consumptions, Oxygen,Oxygen Consumptions
D010758 Phosphorus A non-metal element that has the atomic symbol P, atomic number 15, and atomic weight 31. It is an essential element that takes part in a broad variety of biochemical reactions. Black Phosphorus,Phosphorus-31,Red Phosphorus,White Phosphorus,Yellow Phosphorus,Phosphorus 31,Phosphorus, Black,Phosphorus, Red,Phosphorus, White,Phosphorus, Yellow
D012016 Reference Values The range or frequency distribution of a measurement in a population (of organisms, organs or things) that has not been selected for the presence of disease or abnormality. Normal Range,Normal Values,Reference Ranges,Normal Ranges,Normal Value,Range, Normal,Range, Reference,Ranges, Normal,Ranges, Reference,Reference Range,Reference Value,Value, Normal,Value, Reference,Values, Normal,Values, Reference
D003327 Coronary Disease An imbalance between myocardial functional requirements and the capacity of the CORONARY VESSELS to supply sufficient blood flow. It is a form of MYOCARDIAL ISCHEMIA (insufficient blood supply to the heart muscle) caused by a decreased capacity of the coronary vessels. Coronary Heart Disease,Coronary Diseases,Coronary Heart Diseases,Disease, Coronary,Disease, Coronary Heart,Diseases, Coronary,Diseases, Coronary Heart,Heart Disease, Coronary,Heart Diseases, Coronary
D006019 Glycolysis A metabolic process that converts GLUCOSE into two molecules of PYRUVIC ACID through a series of enzymatic reactions. Energy generated by this process is conserved in two molecules of ATP. Glycolysis is the universal catabolic pathway for glucose, free glucose, or glucose derived from complex CARBOHYDRATES, such as GLYCOGEN and STARCH. Embden-Meyerhof Pathway,Embden-Meyerhof-Parnas Pathway,Embden Meyerhof Parnas Pathway,Embden Meyerhof Pathway,Embden-Meyerhof Pathways,Pathway, Embden-Meyerhof,Pathway, Embden-Meyerhof-Parnas,Pathways, Embden-Meyerhof

Related Publications

E Y Sako, and P B Kingsley-Hickman, and A H From, and J E Foker, and K Ugurbil
October 2012, American journal of physiology. Heart and circulatory physiology,
E Y Sako, and P B Kingsley-Hickman, and A H From, and J E Foker, and K Ugurbil
July 1990, Magnetic resonance in medicine,
E Y Sako, and P B Kingsley-Hickman, and A H From, and J E Foker, and K Ugurbil
May 1990, The American journal of physiology,
E Y Sako, and P B Kingsley-Hickman, and A H From, and J E Foker, and K Ugurbil
October 1983, The American journal of physiology,
E Y Sako, and P B Kingsley-Hickman, and A H From, and J E Foker, and K Ugurbil
January 1995, Transplant international : official journal of the European Society for Organ Transplantation,
E Y Sako, and P B Kingsley-Hickman, and A H From, and J E Foker, and K Ugurbil
January 1994, Basic research in cardiology,
E Y Sako, and P B Kingsley-Hickman, and A H From, and J E Foker, and K Ugurbil
December 1990, The Journal of biological chemistry,
E Y Sako, and P B Kingsley-Hickman, and A H From, and J E Foker, and K Ugurbil
March 1994, Artificial organs,
E Y Sako, and P B Kingsley-Hickman, and A H From, and J E Foker, and K Ugurbil
March 2015, Biochimica et biophysica acta,
E Y Sako, and P B Kingsley-Hickman, and A H From, and J E Foker, and K Ugurbil
January 1989, Zeitschrift fur Naturforschung. C, Journal of biosciences,
Copied contents to your clipboard!