Cholinergic Signaling, Neural Excitability, and Epilepsy. 2021

Yu Wang, and Bei Tan, and Yi Wang, and Zhong Chen
Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, College of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou 310053, China.

Epilepsy is a common brain disorder characterized by recurrent epileptic seizures with neuronal hyperexcitability. Apart from the classical imbalance between excitatory glutamatergic transmission and inhibitory γ-aminobutyric acidergic transmission, cumulative evidence suggest that cholinergic signaling is crucially involved in the modulation of neural excitability and epilepsy. In this review, we briefly describe the distribution of cholinergic neurons, muscarinic, and nicotinic receptors in the central nervous system and their relationship with neural excitability. Then, we summarize the findings from experimental and clinical research on the role of cholinergic signaling in epilepsy. Furthermore, we provide some perspectives on future investigation to reveal the precise role of the cholinergic system in epilepsy.

UI MeSH Term Description Entries
D011978 Receptors, Nicotinic One of the two major classes of cholinergic receptors. Nicotinic receptors were originally distinguished by their preference for NICOTINE over MUSCARINE. They are generally divided into muscle-type and neuronal-type (previously ganglionic) based on pharmacology, and subunit composition of the receptors. Nicotinic Acetylcholine Receptors,Nicotinic Receptors,Nicotinic Acetylcholine Receptor,Nicotinic Receptor,Acetylcholine Receptor, Nicotinic,Acetylcholine Receptors, Nicotinic,Receptor, Nicotinic,Receptor, Nicotinic Acetylcholine,Receptors, Nicotinic Acetylcholine
D004827 Epilepsy A disorder characterized by recurrent episodes of paroxysmal brain dysfunction due to a sudden, disorderly, and excessive neuronal discharge. Epilepsy classification systems are generally based upon: (1) clinical features of the seizure episodes (e.g., motor seizure), (2) etiology (e.g., post-traumatic), (3) anatomic site of seizure origin (e.g., frontal lobe seizure), (4) tendency to spread to other structures in the brain, and (5) temporal patterns (e.g., nocturnal epilepsy). (From Adams et al., Principles of Neurology, 6th ed, p313) Aura,Awakening Epilepsy,Seizure Disorder,Epilepsy, Cryptogenic,Auras,Cryptogenic Epilepsies,Cryptogenic Epilepsy,Epilepsies,Epilepsies, Cryptogenic,Epilepsy, Awakening,Seizure Disorders
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D018678 Cholinergic Agents Any drug used for its actions on cholinergic systems. Included here are agonists and antagonists, drugs that affect the life cycle of ACETYLCHOLINE, and drugs that affect the survival of cholinergic neurons. The term cholinergic agents is sometimes still used in the narrower sense of MUSCARINIC AGONISTS, although most modern texts discourage that usage. Acetylcholine Agent,Acetylcholine Agents,Cholinergic,Cholinergic Agent,Cholinergic Drug,Cholinomimetic,Cholinomimetics,Muscarinic,Muscarinic Agent,Muscarinic Agents,Nicotinic Agent,Nicotinic Agents,Cholinergic Drugs,Cholinergic Effect,Cholinergic Effects,Cholinergics,Muscarinic Effect,Muscarinic Effects,Muscarinics,Nicotinic Effect,Nicotinic Effects,Agent, Acetylcholine,Agent, Cholinergic,Agent, Muscarinic,Agent, Nicotinic,Agents, Acetylcholine,Agents, Cholinergic,Agents, Muscarinic,Agents, Nicotinic,Drug, Cholinergic,Drugs, Cholinergic,Effect, Cholinergic,Effect, Muscarinic,Effect, Nicotinic,Effects, Cholinergic,Effects, Muscarinic,Effects, Nicotinic

Related Publications

Yu Wang, and Bei Tan, and Yi Wang, and Zhong Chen
January 2022, British journal of pharmacology,
Yu Wang, and Bei Tan, and Yi Wang, and Zhong Chen
September 2004, Neuroscience letters,
Yu Wang, and Bei Tan, and Yi Wang, and Zhong Chen
January 2019, Brain structure & function,
Yu Wang, and Bei Tan, and Yi Wang, and Zhong Chen
May 2009, Neuroscience letters,
Yu Wang, and Bei Tan, and Yi Wang, and Zhong Chen
March 2013, Trends in neurosciences,
Yu Wang, and Bei Tan, and Yi Wang, and Zhong Chen
December 2015, Journal of mathematical neuroscience,
Yu Wang, and Bei Tan, and Yi Wang, and Zhong Chen
August 2018, Cellular and molecular life sciences : CMLS,
Yu Wang, and Bei Tan, and Yi Wang, and Zhong Chen
December 2002, Journal of neurobiology,
Yu Wang, and Bei Tan, and Yi Wang, and Zhong Chen
April 1976, Zhurnal nevropatologii i psikhiatrii imeni S.S. Korsakova (Moscow, Russia : 1952),
Copied contents to your clipboard!