Synaptic rearrangements and alterations in motor unit properties in neonatal rat extensor digitorum longus muscle. 1988

R J Balice-Gordon, and W J Thompson
Department of Zoology, University of Texas, Austin 78712.

1. We have used in vitro intracellular recordings and measurements of the contractile properties of single motor units to examine the changes in muscle innervation occurring during the post-natal development of a fast-twitch muscle in the hindlimb of the rat, the extensor digitorum longus (EDL). 2. Intracellular recordings of end-plate potentials evoked in response to graded stimulation of the nerve supply to the muscle indicate that during the first day after birth, each muscle fibre receives synaptic input from at least two motoneurones and that some muscle fibres receive as many as six such inputs. With subsequent development, most of this polyneuronal innervation is eliminated: the first singly innervated fibres are encountered on day 3; by day 18 fewer than 5% of the fibres remain polyneuronally innervated. These results show that there are quantitative differences in post-natal synapse elimination in EDL compared to its well-studied counterpart, the soleus. Although the great majority of fibres in both muscles become singly innervated at about 18 days, the first singly innervated fibres appear at least a week earlier in the EDL. None the less, synapses are lost from EDL at about half the rate they are lost from soleus. 3. The number of motor units, determined by counting the number of twitch increments produced by graded stimulation of ventral root filaments teased to contain only a few EDL motor axons, remains unchanged from an average of forty-one from post-natal day 1 to day 17. In addition, the number of muscle fibres counted in muscle cross-sections stained with an anti-myosin antibody increases less than 10% from birth to adulthood. Therefore, synapse elimination in EDL occurs with a largely constant population of muscle fibres as well as motoneurones. 4. Measurements of tensions generated by single motor units indicate that the average size of a motor unit declines from 6.8% of the muscle fibres at day 1 to 2.3% at 17 days. This result indicates that each motoneurone, on average, comes to innervate threefold fewer muscle fibres. Motor units derived from each of the spinal segments innervating the muscle undergo equivalent reductions in motor unit size, indicating that there is no segmental disproportion to synapse elimination in this muscle. At all ages, there is a large diversity of motor unit sizes in the muscle. Synapse elimination therefore appears to maintain rather than decrease this diversity.(ABSTRACT TRUNCATED AT 400 WORDS)

UI MeSH Term Description Entries
D009045 Motor Endplate The specialized postsynaptic region of a muscle cell. The motor endplate is immediately across the synaptic cleft from the presynaptic axon terminal. Among its anatomical specializations are junctional folds which harbor a high density of cholinergic receptors. Motor End-Plate,End-Plate, Motor,End-Plates, Motor,Endplate, Motor,Endplates, Motor,Motor End Plate,Motor End-Plates,Motor Endplates
D009046 Motor Neurons Neurons which activate MUSCLE CELLS. Neurons, Motor,Alpha Motorneurons,Motoneurons,Motor Neurons, Alpha,Neurons, Alpha Motor,Alpha Motor Neuron,Alpha Motor Neurons,Alpha Motorneuron,Motoneuron,Motor Neuron,Motor Neuron, Alpha,Motorneuron, Alpha,Motorneurons, Alpha,Neuron, Alpha Motor,Neuron, Motor
D009119 Muscle Contraction A process leading to shortening and/or development of tension in muscle tissue. Muscle contraction occurs by a sliding filament mechanism whereby actin filaments slide inward among the myosin filaments. Inotropism,Muscular Contraction,Contraction, Muscle,Contraction, Muscular,Contractions, Muscle,Contractions, Muscular,Inotropisms,Muscle Contractions,Muscular Contractions
D009469 Neuromuscular Junction The synapse between a neuron and a muscle. Myoneural Junction,Nerve-Muscle Preparation,Junction, Myoneural,Junction, Neuromuscular,Junctions, Myoneural,Junctions, Neuromuscular,Myoneural Junctions,Nerve Muscle Preparation,Nerve-Muscle Preparations,Neuromuscular Junctions,Preparation, Nerve-Muscle,Preparations, Nerve-Muscle
D011919 Rats, Inbred Strains Genetically identical individuals developed from brother and sister matings which have been carried out for twenty or more generations or by parent x offspring matings carried out with certain restrictions. This also includes animals with a long history of closed colony breeding. August Rats,Inbred Rat Strains,Inbred Strain of Rat,Inbred Strain of Rats,Inbred Strains of Rats,Rat, Inbred Strain,August Rat,Inbred Rat Strain,Inbred Strain Rat,Inbred Strain Rats,Inbred Strains Rat,Inbred Strains Rats,Rat Inbred Strain,Rat Inbred Strains,Rat Strain, Inbred,Rat Strains, Inbred,Rat, August,Rat, Inbred Strains,Rats Inbred Strain,Rats Inbred Strains,Rats, August,Rats, Inbred Strain,Strain Rat, Inbred,Strain Rats, Inbred,Strain, Inbred Rat,Strains, Inbred Rat
D005071 Evoked Potentials Electrical responses recorded from nerve, muscle, SENSORY RECEPTOR, or area of the CENTRAL NERVOUS SYSTEM following stimulation. They range from less than a microvolt to several microvolts. The evoked potential can be auditory (EVOKED POTENTIALS, AUDITORY), somatosensory (EVOKED POTENTIALS, SOMATOSENSORY), visual (EVOKED POTENTIALS, VISUAL), or motor (EVOKED POTENTIALS, MOTOR), or other modalities that have been reported. Event Related Potential,Event-Related Potentials,Evoked Potential,N100 Evoked Potential,P50 Evoked Potential,N1 Wave,N100 Evoked Potentials,N2 Wave,N200 Evoked Potentials,N3 Wave,N300 Evoked Potentials,N4 Wave,N400 Evoked Potentials,P2 Wave,P200 Evoked Potentials,P50 Evoked Potentials,P50 Wave,P600 Evoked Potentials,Potentials, Event-Related,Event Related Potentials,Event-Related Potential,Evoked Potential, N100,Evoked Potential, N200,Evoked Potential, N300,Evoked Potential, N400,Evoked Potential, P200,Evoked Potential, P50,Evoked Potential, P600,Evoked Potentials, N100,Evoked Potentials, N200,Evoked Potentials, N300,Evoked Potentials, N400,Evoked Potentials, P200,Evoked Potentials, P50,Evoked Potentials, P600,N1 Waves,N2 Waves,N200 Evoked Potential,N3 Waves,N300 Evoked Potential,N4 Waves,N400 Evoked Potential,P2 Waves,P200 Evoked Potential,P50 Waves,P600 Evoked Potential,Potential, Event Related,Potential, Event-Related,Potential, Evoked,Potentials, Event Related,Potentials, Evoked,Potentials, N400 Evoked,Related Potential, Event,Related Potentials, Event,Wave, N1,Wave, N2,Wave, N3,Wave, N4,Wave, P2,Wave, P50,Waves, N1,Waves, N2,Waves, N3,Waves, N4,Waves, P2,Waves, P50
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D000831 Animals, Newborn Refers to animals in the period of time just after birth. Animals, Neonatal,Animal, Neonatal,Animal, Newborn,Neonatal Animal,Neonatal Animals,Newborn Animal,Newborn Animals
D013569 Synapses Specialized junctions at which a neuron communicates with a target cell. At classical synapses, a neuron's presynaptic terminal releases a chemical transmitter stored in synaptic vesicles which diffuses across a narrow synaptic cleft and activates receptors on the postsynaptic membrane of the target cell. The target may be a dendrite, cell body, or axon of another neuron, or a specialized region of a muscle or secretory cell. Neurons may also communicate via direct electrical coupling with ELECTRICAL SYNAPSES. Several other non-synaptic chemical or electric signal transmitting processes occur via extracellular mediated interactions. Synapse
D051381 Rats The common name for the genus Rattus. Rattus,Rats, Laboratory,Rats, Norway,Rattus norvegicus,Laboratory Rat,Laboratory Rats,Norway Rat,Norway Rats,Rat,Rat, Laboratory,Rat, Norway,norvegicus, Rattus

Related Publications

R J Balice-Gordon, and W J Thompson
June 2001, The journals of gerontology. Series A, Biological sciences and medical sciences,
R J Balice-Gordon, and W J Thompson
April 2022, Journal of anatomy,
R J Balice-Gordon, and W J Thompson
January 1990, Progress in clinical and biological research,
R J Balice-Gordon, and W J Thompson
May 1973, The American journal of physiology,
R J Balice-Gordon, and W J Thompson
September 2000, Croatian medical journal,
R J Balice-Gordon, and W J Thompson
December 1980, Developmental biology,
R J Balice-Gordon, and W J Thompson
December 1996, Mechanisms of ageing and development,
R J Balice-Gordon, and W J Thompson
March 1998, The Journal of experimental biology,
R J Balice-Gordon, and W J Thompson
June 1998, The Journal of experimental biology,
Copied contents to your clipboard!