Determining laminar neuronal activity from BOLD fMRI using a generative model. 2021

Kamil Uludag, and Martin Havlicek
Techna Institute & Koerner Scientist in MR Imaging, University Health Network, Toronto, Canada; Center for Neuroscience Imaging Research, Institute for Basic Science & Department of Biomedical Engineering, Sungkyunkwan University, Suwon, Republic of Korea. Electronic address: kamil.uludag@rmp.uhn.ca.

Laminar fMRI using the BOLD contrast enables the non-invasive investigation of mesoscopic functional circuits in the human brain. However, the laminar neuronal activity is spatiotemporally biased in the observed cortical depth profiles of the BOLD signal. In this study, we propose a generative fMRI signal model, comprehensively covering the relationship between cortical depth-dependent changes in excitatory and inhibitory neuronal activity with the sampling of the BOLD signal with finite voxels. The generative model allowed us to investigate pertinent questions regarding the accuracy of the laminar BOLD signal relative to the neuronal activity, and we found that: a) condition differences in laminar BOLD signals may be more reflective of neuronal activity than single condition BOLD signal depth profiles; b) angular dependence of the BOLD signal induces significant signal variability, which can mask underlying activity profiles; c) even if only three neuronal depths are of interest, more BOLD signal depths should be considered in the analysis. In addition, we recommend that the laminar BOLD data should be displayed using the centroid method to appreciate its spatial distribution in the original resolution. Finally, we showed that Bayesian model inversion of the generative model can improve sensitivity and specificity of assessing depth-dependent neuronal changes both for steady-state and dynamically.

UI MeSH Term Description Entries
D008279 Magnetic Resonance Imaging Non-invasive method of demonstrating internal anatomy based on the principle that atomic nuclei in a strong magnetic field absorb pulses of radiofrequency energy and emit them as radiowaves which can be reconstructed into computerized images. The concept includes proton spin tomographic techniques. Chemical Shift Imaging,MR Tomography,MRI Scans,MRI, Functional,Magnetic Resonance Image,Magnetic Resonance Imaging, Functional,Magnetization Transfer Contrast Imaging,NMR Imaging,NMR Tomography,Tomography, NMR,Tomography, Proton Spin,fMRI,Functional Magnetic Resonance Imaging,Imaging, Chemical Shift,Proton Spin Tomography,Spin Echo Imaging,Steady-State Free Precession MRI,Tomography, MR,Zeugmatography,Chemical Shift Imagings,Echo Imaging, Spin,Echo Imagings, Spin,Functional MRI,Functional MRIs,Image, Magnetic Resonance,Imaging, Magnetic Resonance,Imaging, NMR,Imaging, Spin Echo,Imagings, Chemical Shift,Imagings, Spin Echo,MRI Scan,MRIs, Functional,Magnetic Resonance Images,Resonance Image, Magnetic,Scan, MRI,Scans, MRI,Shift Imaging, Chemical,Shift Imagings, Chemical,Spin Echo Imagings,Steady State Free Precession MRI
D009474 Neurons The basic cellular units of nervous tissue. Each neuron consists of a body, an axon, and dendrites. Their purpose is to receive, conduct, and transmit impulses in the NERVOUS SYSTEM. Nerve Cells,Cell, Nerve,Cells, Nerve,Nerve Cell,Neuron
D001921 Brain The part of CENTRAL NERVOUS SYSTEM that is contained within the skull (CRANIUM). Arising from the NEURAL TUBE, the embryonic brain is comprised of three major parts including PROSENCEPHALON (the forebrain); MESENCEPHALON (the midbrain); and RHOMBENCEPHALON (the hindbrain). The developed brain consists of CEREBRUM; CEREBELLUM; and other structures in the BRAIN STEM. Encephalon
D001931 Brain Mapping Imaging techniques used to colocalize sites of brain functions or physiological activity with brain structures. Brain Electrical Activity Mapping,Functional Cerebral Localization,Topographic Brain Mapping,Brain Mapping, Topographic,Functional Cerebral Localizations,Mapping, Brain,Mapping, Topographic Brain
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D001499 Bayes Theorem A theorem in probability theory named for Thomas Bayes (1702-1761). In epidemiology, it is used to obtain the probability of disease in a group of people with some characteristic on the basis of the overall rate of that disease and of the likelihood of that characteristic in healthy and diseased individuals. The most familiar application is in clinical decision analysis where it is used for estimating the probability of a particular diagnosis given the appearance of some symptoms or test result. Bayesian Analysis,Bayesian Estimation,Bayesian Forecast,Bayesian Method,Bayesian Prediction,Analysis, Bayesian,Bayesian Approach,Approach, Bayesian,Approachs, Bayesian,Bayesian Approachs,Estimation, Bayesian,Forecast, Bayesian,Method, Bayesian,Prediction, Bayesian,Theorem, Bayes

Related Publications

Kamil Uludag, and Martin Havlicek
July 2021, Cerebral cortex (New York, N.Y. : 1991),
Kamil Uludag, and Martin Havlicek
October 2011, IEEE transactions on bio-medical engineering,
Kamil Uludag, and Martin Havlicek
January 2020, NeuroImage,
Kamil Uludag, and Martin Havlicek
January 2023, Advances in experimental medicine and biology,
Kamil Uludag, and Martin Havlicek
January 2015, NeuroImage,
Kamil Uludag, and Martin Havlicek
May 2015, Current biology : CB,
Kamil Uludag, and Martin Havlicek
January 2010, NeuroImage,
Kamil Uludag, and Martin Havlicek
January 2001, NMR in biomedicine,
Copied contents to your clipboard!