Purification and characterization of unique glutathione S-transferases from human muscle. 1988

S V Singh, and H Ahmad, and A Kurosky, and Y C Awasthi
Department of Human Biological Chemistry and Genetics, University of Texas Medical Branch, Galveston 77550.

Results of studies designed to investigate the origin of the diversity of glutathione S-transferase (GST) isozymes in human tissues indicated that human muscle has at least three forms of GST with pI values of 5.0, 5.1, and 5.2 that are distinct from GST isozymes characterized so far. The major muscle isozyme which was expressed in all the six samples analyzed in this study was a unique GST of pI 5.2 that was designated as GST zeta. It had a blocked N-terminal and did not correspond to any of the known three classes (alpha, mu, or pi) of human GST as evidenced by its immunological properties and substrate specificities. The N-terminal regions of human muscle GST 5.1 and 5.0 had identical amino acid sequences except at residue 5, but demonstrated significant differences in amino acid composition and substrate specificities. These two isozymes showed homology with the mu class of human GST in their N-terminal region and were also immunologically related to the mu class of human GST although their subunit molecular weight values (Mr 23,000) were lower than that reported for GST psi. The substrate specificities of these isozymes were also significantly different from those of other human GST isozymes characterized so far. Significantly, muscle tissue did not express the alpha class of GST isozymes; however, two other isozymes were identified, GST 4.8 and GST 4.5, which had identical N-terminal amino acid sequences that were similar to that reported for the pi class of human GST. GST 4.8 was present in all six samples analyzed in this study whereas GST 4.5 was present in only two of these samples, indicating a possibility of polymorphism at the GST3 locus. This study indicated the occurrence of at least three distinct isozymes in muscle tissue, providing further evidence for tissue specific expression of GST isozymes in humans.

UI MeSH Term Description Entries
D007118 Immunoassay A technique using antibodies for identifying or quantifying a substance. Usually the substance being studied serves as antigen both in antibody production and in measurement of antibody by the test substance. Immunochromatographic Assay,Assay, Immunochromatographic,Assays, Immunochromatographic,Immunoassays,Immunochromatographic Assays
D007527 Isoenzymes Structurally related forms of an enzyme. Each isoenzyme has the same mechanism and classification, but differs in its chemical, physical, or immunological characteristics. Alloenzyme,Allozyme,Isoenzyme,Isozyme,Isozymes,Alloenzymes,Allozymes
D008297 Male Males
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D008970 Molecular Weight The sum of the weight of all the atoms in a molecule. Molecular Weights,Weight, Molecular,Weights, Molecular
D009132 Muscles Contractile tissue that produces movement in animals. Muscle Tissue,Muscle,Muscle Tissues,Tissue, Muscle,Tissues, Muscle
D003101 Collodion A nitrocellulose solution in ether and alcohol. Collodion has a wide range of uses in industry including applications in the manufacture of photographic film, in fibers, in lacquers, and in engraving and lithography. In medicine it is used as a drug solvent and a wound sealant. Nitrocellulose,Celloidin,Cellulose Nitrate,Collodion Cotton,Pyroxylin,Cotton, Collodion,Nitrate, Cellulose
D003429 Cross Reactions Serological reactions in which an antiserum against one antigen reacts with a non-identical but closely related antigen. Cross Reaction,Reaction, Cross,Reactions, Cross
D005260 Female Females
D005982 Glutathione Transferase A transferase that catalyzes the addition of aliphatic, aromatic, or heterocyclic FREE RADICALS as well as EPOXIDES and arene oxides to GLUTATHIONE. Addition takes place at the SULFUR. It also catalyzes the reduction of polyol nitrate by glutathione to polyol and nitrite. Glutathione S-Alkyltransferase,Glutathione S-Aryltransferase,Glutathione S-Epoxidetransferase,Ligandins,S-Hydroxyalkyl Glutathione Lyase,Glutathione Organic Nitrate Ester Reductase,Glutathione S-Transferase,Glutathione S-Transferase 3,Glutathione S-Transferase A,Glutathione S-Transferase B,Glutathione S-Transferase C,Glutathione S-Transferase III,Glutathione S-Transferase P,Glutathione Transferase E,Glutathione Transferase mu,Glutathione Transferases,Heme Transfer Protein,Ligandin,Yb-Glutathione-S-Transferase,Glutathione Lyase, S-Hydroxyalkyl,Glutathione S Alkyltransferase,Glutathione S Aryltransferase,Glutathione S Epoxidetransferase,Glutathione S Transferase,Glutathione S Transferase 3,Glutathione S Transferase A,Glutathione S Transferase B,Glutathione S Transferase C,Glutathione S Transferase III,Glutathione S Transferase P,Lyase, S-Hydroxyalkyl Glutathione,P, Glutathione S-Transferase,Protein, Heme Transfer,S Hydroxyalkyl Glutathione Lyase,S-Alkyltransferase, Glutathione,S-Aryltransferase, Glutathione,S-Epoxidetransferase, Glutathione,S-Transferase 3, Glutathione,S-Transferase A, Glutathione,S-Transferase B, Glutathione,S-Transferase C, Glutathione,S-Transferase III, Glutathione,S-Transferase P, Glutathione,S-Transferase, Glutathione,Transfer Protein, Heme,Transferase E, Glutathione,Transferase mu, Glutathione,Transferase, Glutathione,Transferases, Glutathione

Related Publications

S V Singh, and H Ahmad, and A Kurosky, and Y C Awasthi
August 1987, The Biochemical journal,
S V Singh, and H Ahmad, and A Kurosky, and Y C Awasthi
July 1987, Clinica chimica acta; international journal of clinical chemistry,
S V Singh, and H Ahmad, and A Kurosky, and Y C Awasthi
June 1988, Biochemical pharmacology,
S V Singh, and H Ahmad, and A Kurosky, and Y C Awasthi
November 1984, Current eye research,
S V Singh, and H Ahmad, and A Kurosky, and Y C Awasthi
September 1991, Biochimica et biophysica acta,
S V Singh, and H Ahmad, and A Kurosky, and Y C Awasthi
January 1995, Methods in enzymology,
S V Singh, and H Ahmad, and A Kurosky, and Y C Awasthi
September 1982, Experimental eye research,
S V Singh, and H Ahmad, and A Kurosky, and Y C Awasthi
January 1990, Journal of biochemistry,
S V Singh, and H Ahmad, and A Kurosky, and Y C Awasthi
March 1984, Journal of biochemistry,
Copied contents to your clipboard!