Characterisation of VP-16-induced DNA cleavage in oestrogen-stimulated human breast cancer cells. 1988

R J Epstein, and P J Smith, and J V Watson, and N M Bleehen
MRC Unit, MRC Centre, Cambridge, UK.

Cycling cells are recognised to be more susceptible than quiescent cells to the cytotoxic action of many commonly used cancer chemotherapeutic agents. We have found that oestrogen stimulation of T-47D human breast cancer cells is accompanied by a two-fold increase in VP-16-induced DNA cleavage as measured by alkaline DNA unwinding, and that this increase in DNA cleavage is accompanied by a corresponding enhancement of drug-induced cytostasis. The enhancement of VP-16-induced DNA cleavage seen with oestrogen exposure is antagonised both by antioestrogen treatment and by cycloheximide, an inhibitor of protein synthesis, but not by the DNA synthesis inhibitor aphidicolin. Increased c-myc protein synthesis is detectable within an hour of oestrogen exposure, while increased VP-16-induced DNA cleavage is detectable within 4h and increased DNA synthesis within 16h. Only small changes in cell-cycle distribution occur with oestrogen stimulation. In the absence of VP-16, oestrogen does not reduce DNA double-strandedness, nor does it induce changes in chromatin structure as measured by alterations in DNA superhelicity or chromatin accessibility. These findings suggest that oestrogen enhances VP-16-induced DNA damage in asynchronously growing G1-phase cells and that this enhancement may be dependent at some point upon de novo protein synthesis. Oestrogen pre-treatment of T-47D human breast cancer cells improves the therapeutic index of VP-16 without the need for cell synchronisation or highly precise drug scheduling.

UI MeSH Term Description Entries
D001943 Breast Neoplasms Tumors or cancer of the human BREAST. Breast Cancer,Breast Tumors,Cancer of Breast,Breast Carcinoma,Cancer of the Breast,Human Mammary Carcinoma,Malignant Neoplasm of Breast,Malignant Tumor of Breast,Mammary Cancer,Mammary Carcinoma, Human,Mammary Neoplasm, Human,Mammary Neoplasms, Human,Neoplasms, Breast,Tumors, Breast,Breast Carcinomas,Breast Malignant Neoplasm,Breast Malignant Neoplasms,Breast Malignant Tumor,Breast Malignant Tumors,Breast Neoplasm,Breast Tumor,Cancer, Breast,Cancer, Mammary,Cancers, Mammary,Carcinoma, Breast,Carcinoma, Human Mammary,Carcinomas, Breast,Carcinomas, Human Mammary,Human Mammary Carcinomas,Human Mammary Neoplasm,Human Mammary Neoplasms,Mammary Cancers,Mammary Carcinomas, Human,Neoplasm, Breast,Neoplasm, Human Mammary,Neoplasms, Human Mammary,Tumor, Breast
D002455 Cell Division The fission of a CELL. It includes CYTOKINESIS, when the CYTOPLASM of a cell is divided, and CELL NUCLEUS DIVISION. M Phase,Cell Division Phase,Cell Divisions,Division Phase, Cell,Division, Cell,Divisions, Cell,M Phases,Phase, Cell Division,Phase, M,Phases, M
D002843 Chromatin The material of CHROMOSOMES. It is a complex of DNA; HISTONES; and nonhistone proteins (CHROMOSOMAL PROTEINS, NON-HISTONE) found within the nucleus of a cell. Chromatins
D004249 DNA Damage Injuries to DNA that introduce deviations from its normal, intact structure and which may, if left unrepaired, result in a MUTATION or a block of DNA REPLICATION. These deviations may be caused by physical or chemical agents and occur by natural or unnatural, introduced circumstances. They include the introduction of illegitimate bases during replication or by deamination or other modification of bases; the loss of a base from the DNA backbone leaving an abasic site; single-strand breaks; double strand breaks; and intrastrand (PYRIMIDINE DIMERS) or interstrand crosslinking. Damage can often be repaired (DNA REPAIR). If the damage is extensive, it can induce APOPTOSIS. DNA Injury,DNA Lesion,DNA Lesions,Genotoxic Stress,Stress, Genotoxic,Injury, DNA,DNA Injuries
D004273 DNA, Neoplasm DNA present in neoplastic tissue. Neoplasm DNA
D004305 Dose-Response Relationship, Drug The relationship between the dose of an administered drug and the response of the organism to the drug. Dose Response Relationship, Drug,Dose-Response Relationships, Drug,Drug Dose-Response Relationship,Drug Dose-Response Relationships,Relationship, Drug Dose-Response,Relationships, Drug Dose-Response
D004357 Drug Synergism The action of a drug in promoting or enhancing the effectiveness of another drug. Drug Potentiation,Drug Augmentation,Augmentation, Drug,Augmentations, Drug,Drug Augmentations,Drug Potentiations,Drug Synergisms,Potentiation, Drug,Potentiations, Drug,Synergism, Drug,Synergisms, Drug
D004958 Estradiol The 17-beta-isomer of estradiol, an aromatized C18 steroid with hydroxyl group at 3-beta- and 17-beta-position. Estradiol-17-beta is the most potent form of mammalian estrogenic steroids. 17 beta-Estradiol,Estradiol-17 beta,Oestradiol,17 beta-Oestradiol,Aerodiol,Delestrogen,Estrace,Estraderm TTS,Estradiol Anhydrous,Estradiol Hemihydrate,Estradiol Hemihydrate, (17 alpha)-Isomer,Estradiol Monohydrate,Estradiol Valerate,Estradiol Valeriante,Estradiol, (+-)-Isomer,Estradiol, (-)-Isomer,Estradiol, (16 alpha,17 alpha)-Isomer,Estradiol, (16 alpha,17 beta)-Isomer,Estradiol, (17-alpha)-Isomer,Estradiol, (8 alpha,17 beta)-(+-)-Isomer,Estradiol, (8 alpha,17 beta)-Isomer,Estradiol, (9 beta,17 alpha)-Isomer,Estradiol, (9 beta,17 beta)-Isomer,Estradiol, Monosodium Salt,Estradiol, Sodium Salt,Estradiol-17 alpha,Estradiol-17beta,Ovocyclin,Progynon-Depot,Progynova,Vivelle,17 beta Estradiol,17 beta Oestradiol,Estradiol 17 alpha,Estradiol 17 beta,Estradiol 17beta,Progynon Depot
D005047 Etoposide A semisynthetic derivative of PODOPHYLLOTOXIN that exhibits antitumor activity. Etoposide inhibits DNA synthesis by forming a complex with topoisomerase II and DNA. This complex induces breaks in double stranded DNA and prevents repair by topoisomerase II binding. Accumulated breaks in DNA prevent entry into the mitotic phase of cell division, and lead to cell death. Etoposide acts primarily in the G2 and S phases of the cell cycle. Demethyl Epipodophyllotoxin Ethylidine Glucoside,Celltop,Eposide,Eposin,Eto-GRY,Etomedac,Etopos,Etoposide Pierre Fabre,Etoposide Teva,Etoposide, (5S)-Isomer,Etoposide, (5a alpha)-Isomer,Etoposide, (5a alpha,9 alpha)-Isomer,Etoposide, alpha-D-Glucopyranosyl Isomer,Etoposido Ferrer Farma,Exitop,Lastet,NSC-141540,Onkoposid,Riboposid,Toposar,VP 16-213,VP-16,Vepesid,Vépéside-Sandoz,Eto GRY,Etoposide, alpha D Glucopyranosyl Isomer,NSC 141540,NSC141540,Teva, Etoposide,VP 16,VP 16 213,VP 16213,VP16,Vépéside Sandoz,alpha-D-Glucopyranosyl Isomer Etoposide
D005260 Female Females

Related Publications

R J Epstein, and P J Smith, and J V Watson, and N M Bleehen
January 1991, Anticancer research,
R J Epstein, and P J Smith, and J V Watson, and N M Bleehen
January 1990, Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie,
R J Epstein, and P J Smith, and J V Watson, and N M Bleehen
January 1999, Anticancer research,
R J Epstein, and P J Smith, and J V Watson, and N M Bleehen
October 1984, Biochimica et biophysica acta,
R J Epstein, and P J Smith, and J V Watson, and N M Bleehen
January 2014, European journal of cancer (Oxford, England : 1990),
R J Epstein, and P J Smith, and J V Watson, and N M Bleehen
January 1994, Investigational new drugs,
R J Epstein, and P J Smith, and J V Watson, and N M Bleehen
October 1982, American journal of clinical oncology,
R J Epstein, and P J Smith, and J V Watson, and N M Bleehen
April 1995, Biochimica et biophysica acta,
R J Epstein, and P J Smith, and J V Watson, and N M Bleehen
May 1998, Biochemical and biophysical research communications,
R J Epstein, and P J Smith, and J V Watson, and N M Bleehen
January 1987, Cancer chemotherapy and pharmacology,
Copied contents to your clipboard!