Stability and immunological cross-reactivity of malate dehydrogenases from mesophilic and thermophilic sources. 1988

K Smith, and T K Sundaram
Department of Biochemistry and Applied Molecular Biology, University of Manchester Institute of Science and Technology, U.K.

The thermostability in vitro of dimeric and tetrameric malate dehydrogenases [S)-malate:NAD+ oxidoreductase, EC 1.1.1.37) from mesophilic and thermophilic bacteria shows a good correlation to the growth temperature of the source organism but no consistent relationship to enzyme subunit structure. The thermophile malate dehydrogenases are, in general, more resistant to the surfactants, sodium dodecyl sulphate (SDS) and hexadecyltrimethylammonium bromide, and to the denaturants, guanidinium chloride and urea, than their mesophilic counterparts, with the dimer in each thermal class being more resistant to the chemical perturbants than the tetramer. Sedimentation analysis suggests that denaturation of the malate dehydrogenases by acid-periodate or SDS produces discrete subunits, whereas denaturation by guanidinium chloride followed by carboxymethylation yields ill-defined protein species. SDS and acid-periodate were therefore preferred to generate denatured malate dehydrogenases for use as immunogens and antigens. The native malate dehydrogenases exhibit immunological cross-reactivity only when they are in the same oligomeric form and derived from closely related species, which may, however, be from different thermal classes. Taking immunological cross-reactivity as an indicator of structural similarity, this supports the idea that the thermophilic trait evolved independently within each phyletic line. With denatured malate dehydrogenases as immunogens and antigens, cross-reactivity is manifested between all the malate dehydrogenases examined. This suggests that appreciable primary structural homology exists between the malate dehydrogenases, whether dimeric or tetrameric, from thermophiles and mesophiles and from various taxa.

UI MeSH Term Description Entries
D007527 Isoenzymes Structurally related forms of an enzyme. Each isoenzyme has the same mechanism and classification, but differs in its chemical, physical, or immunological characteristics. Alloenzyme,Allozyme,Isoenzyme,Isozyme,Isozymes,Alloenzymes,Allozymes
D008291 Malate Dehydrogenase An enzyme that catalyzes the conversion of (S)-malate and NAD+ to oxaloacetate and NADH. EC 1.1.1.37. Malic Dehydrogenase,NAD-Malate Dehydrogenase,Dehydrogenase, Malate,Dehydrogenase, Malic,Dehydrogenase, NAD-Malate,NAD Malate Dehydrogenase
D011489 Protein Denaturation Disruption of the non-covalent bonds and/or disulfide bonds responsible for maintaining the three-dimensional shape and activity of the native protein. Denaturation, Protein,Denaturations, Protein,Protein Denaturations
D003429 Cross Reactions Serological reactions in which an antiserum against one antigen reacts with a non-identical but closely related antigen. Cross Reaction,Reaction, Cross,Reactions, Cross
D001407 Bacillus A genus of BACILLACEAE that are spore-forming, rod-shaped cells. Most species are saprophytic soil forms with only a few species being pathogenic. Bacillus bacterium
D013501 Surface-Active Agents Agents that modify interfacial tension of water; usually substances that have one lipophilic and one hydrophilic group in the molecule; includes soaps, detergents, emulsifiers, dispersing and wetting agents, and several groups of antiseptics. Surface Active Agent,Surface-Active Agent,Surfactant,Surfactants,Tenside,Amphiphilic Agents,Surface Active Agents,Tensides,Active Agent, Surface,Active Agents, Surface,Agent, Surface Active,Agent, Surface-Active,Agents, Amphiphilic,Agents, Surface Active,Agents, Surface-Active
D013824 Thermus Gram-negative aerobic rods found in warm water (40-79 degrees C) such as hot springs, hot water tanks, and thermally polluted rivers.

Related Publications

K Smith, and T K Sundaram
August 1979, International journal of peptide and protein research,
K Smith, and T K Sundaram
September 1982, Biochimica et biophysica acta,
K Smith, and T K Sundaram
March 1967, Journal of bacteriology,
K Smith, and T K Sundaram
June 1973, Canadian journal of microbiology,
K Smith, and T K Sundaram
January 2006, Biotechnology progress,
Copied contents to your clipboard!