Stability of Ligand-induced Protein Conformation Influences Affinity in Maltose-binding Protein. 2021

Marco van den Noort, and Marijn de Boer, and Bert Poolman
Department of Biochemistry, Groningen Biomolecular Science and Biotechnology Institute, University of Groningen, Nijenborgh 4, Groningen 9747 AG, the Netherlands.

Our understanding of what determines ligand affinity of proteins is poor, even with high-resolution structures available. Both the non-covalent ligand-protein interactions and the relative free energies of available conformations contribute to the affinity of a protein for a ligand. Distant, non-binding site residues can influence the ligand affinity by altering the free energy difference between a ligand-free and ligand-bound conformation. Our hypothesis is that when different ligands induce distinct ligand-bound conformations, it should be possible to tweak their affinities by changing the free energies of the available conformations. We tested this idea for the maltose-binding protein (MBP) from Escherichia coli. We used single-molecule Förster resonance energy transfer (smFRET) to distinguish several unique ligand-bound conformations of MBP. We engineered mutations, distant from the binding site, to affect the stabilities of different ligand-bound conformations. We show that ligand affinity can indeed be altered in a conformation-dependent manner. Our studies provide a framework for the tuning of ligand affinity, apart from modifying binding site residues.

UI MeSH Term Description Entries
D008024 Ligands A molecule that binds to another molecule, used especially to refer to a small molecule that binds specifically to a larger molecule, e.g., an antigen binding to an antibody, a hormone or neurotransmitter binding to a receptor, or a substrate or allosteric effector binding to an enzyme. Ligands are also molecules that donate or accept a pair of electrons to form a coordinate covalent bond with the central metal atom of a coordination complex. (From Dorland, 27th ed) Ligand
D008958 Models, Molecular Models used experimentally or theoretically to study molecular shape, electronic properties, or interactions; includes analogous molecules, computer-generated graphics, and mechanical structures. Molecular Models,Model, Molecular,Molecular Model
D009154 Mutation Any detectable and heritable change in the genetic material that causes a change in the GENOTYPE and which is transmitted to daughter cells and to succeeding generations. Mutations
D011485 Protein Binding The process in which substances, either endogenous or exogenous, bind to proteins, peptides, enzymes, protein precursors, or allied compounds. Specific protein-binding measures are often used as assays in diagnostic assessments. Plasma Protein Binding Capacity,Binding, Protein
D011487 Protein Conformation The characteristic 3-dimensional shape of a protein, including the secondary, supersecondary (motifs), tertiary (domains) and quaternary structure of the peptide chain. PROTEIN STRUCTURE, QUATERNARY describes the conformation assumed by multimeric proteins (aggregates of more than one polypeptide chain). Conformation, Protein,Conformations, Protein,Protein Conformations
D004926 Escherichia coli A species of gram-negative, facultatively anaerobic, rod-shaped bacteria (GRAM-NEGATIVE FACULTATIVELY ANAEROBIC RODS) commonly found in the lower part of the intestine of warm-blooded animals. It is usually nonpathogenic, but some strains are known to produce DIARRHEA and pyogenic infections. Pathogenic strains (virotypes) are classified by their specific pathogenic mechanisms such as toxins (ENTEROTOXIGENIC ESCHERICHIA COLI), etc. Alkalescens-Dispar Group,Bacillus coli,Bacterium coli,Bacterium coli commune,Diffusely Adherent Escherichia coli,E coli,EAggEC,Enteroaggregative Escherichia coli,Enterococcus coli,Diffusely Adherent E. coli,Enteroaggregative E. coli,Enteroinvasive E. coli,Enteroinvasive Escherichia coli
D000072760 Single Molecule Imaging High resolution imaging techniques that allow visualization of individual molecules of proteins, lipids, or nucleic acids within cells or tissues. Single Molecule Analysis,Single Molecule Tracking,Single Particle Analysis,Single Particle Imaging,Single Particle Microscopy,Single Particle Spectroscopy,Single Particle Tracking,Single Molecule Microscopy,Single Molecule Spectroscopy,Analyses, Single Particle,Analysis, Single Molecule,Analysis, Single Particle,Imaging, Single Molecule,Imaging, Single Particle,Microscopies, Single Particle,Microscopy, Single Molecule,Microscopy, Single Particle,Particle Tracking, Single,Single Molecule Analyses,Single Particle Analyses,Single Particle Microscopies,Single Particle Spectroscopies,Single Particle Trackings,Spectroscopy, Single Molecule,Spectroscopy, Single Particle,Tracking, Single Molecule,Tracking, Single Particle
D001665 Binding Sites The parts of a macromolecule that directly participate in its specific combination with another molecule. Combining Site,Binding Site,Combining Sites,Site, Binding,Site, Combining,Sites, Binding,Sites, Combining
D055550 Protein Stability The ability of a protein to retain its structural conformation or its activity when subjected to physical or chemical manipulations. Protein Stabilities,Stabilities, Protein,Stability, Protein
D029968 Escherichia coli Proteins Proteins obtained from ESCHERICHIA COLI. E coli Proteins

Related Publications

Marco van den Noort, and Marijn de Boer, and Bert Poolman
November 2009, Journal of molecular biology,
Marco van den Noort, and Marijn de Boer, and Bert Poolman
January 1993, Advances in experimental medicine and biology,
Marco van den Noort, and Marijn de Boer, and Bert Poolman
June 1993, The Biochemical journal,
Marco van den Noort, and Marijn de Boer, and Bert Poolman
June 1991, Biochemistry,
Marco van den Noort, and Marijn de Boer, and Bert Poolman
March 1992, FEBS letters,
Marco van den Noort, and Marijn de Boer, and Bert Poolman
April 2012, Chembiochem : a European journal of chemical biology,
Marco van den Noort, and Marijn de Boer, and Bert Poolman
January 1997, Methods in molecular biology (Clifton, N.J.),
Marco van den Noort, and Marijn de Boer, and Bert Poolman
December 1999, European journal of biochemistry,
Marco van den Noort, and Marijn de Boer, and Bert Poolman
January 1978, Journal of toxicology and environmental health,
Marco van den Noort, and Marijn de Boer, and Bert Poolman
September 2010, Applied microbiology and biotechnology,
Copied contents to your clipboard!