Circular RNA circitga7 accelerates glioma progression via miR-34a-5p/VEGFA axis. 2021

Ling Qi, and Weiyao Wang, and Guifang Zhao, and Hong Jiang, and Yu Zhang, and Donghai Zhao, and Hong Jin, and Hongquan Yu, and Haiyang Xu
The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan 511518, Guangdong, China.

Circular RNAs (circRNAs) are a group of noncoding RNAs derived from back-splicing events. CircRNA is reported to be involved in various tumor progressions, including glioma. Although there are a few reports of circular RNAs participating in gliomas, it is still unclear whether circular RNAs regulate the occurrence of gliomas. In our research, we found that the expression of circITGA7 in glioma tissues and glioma cells increased significantly. Knocking down circITGA7 can significantly inhibit the proliferation of glioma cells and reduce cell metastasis. Through analysis and dual-luciferase report assay, we found that circITGA7 acts as a sponge for miR-34a-5p targeting VEGFA in glioma. Our study showed that circITGA7 regulates the proliferation and metastasis of glioma cell lines (SW1783&U373) by regulating the miR-34a-5p/VEGFA pathway. In conclusion, our study revealed a regulatory loop for the circITGA7/miR-34a-5p/VEGFA axis to regulate glioma development.

UI MeSH Term Description Entries
D001932 Brain Neoplasms Neoplasms of the intracranial components of the central nervous system, including the cerebral hemispheres, basal ganglia, hypothalamus, thalamus, brain stem, and cerebellum. Brain neoplasms are subdivided into primary (originating from brain tissue) and secondary (i.e., metastatic) forms. Primary neoplasms are subdivided into benign and malignant forms. In general, brain tumors may also be classified by age of onset, histologic type, or presenting location in the brain. Brain Cancer,Brain Metastases,Brain Tumors,Cancer of Brain,Malignant Primary Brain Tumors,Neoplasms, Intracranial,Benign Neoplasms, Brain,Brain Neoplasm, Primary,Brain Neoplasms, Benign,Brain Neoplasms, Malignant,Brain Neoplasms, Malignant, Primary,Brain Neoplasms, Primary Malignant,Brain Tumor, Primary,Brain Tumor, Recurrent,Cancer of the Brain,Intracranial Neoplasms,Malignant Neoplasms, Brain,Malignant Primary Brain Neoplasms,Neoplasms, Brain,Neoplasms, Brain, Benign,Neoplasms, Brain, Malignant,Neoplasms, Brain, Primary,Primary Brain Neoplasms,Primary Malignant Brain Neoplasms,Primary Malignant Brain Tumors,Benign Brain Neoplasm,Benign Brain Neoplasms,Benign Neoplasm, Brain,Brain Benign Neoplasm,Brain Benign Neoplasms,Brain Cancers,Brain Malignant Neoplasm,Brain Malignant Neoplasms,Brain Metastase,Brain Neoplasm,Brain Neoplasm, Benign,Brain Neoplasm, Malignant,Brain Neoplasms, Primary,Brain Tumor,Brain Tumors, Recurrent,Cancer, Brain,Intracranial Neoplasm,Malignant Brain Neoplasm,Malignant Brain Neoplasms,Malignant Neoplasm, Brain,Neoplasm, Brain,Neoplasm, Intracranial,Primary Brain Neoplasm,Primary Brain Tumor,Primary Brain Tumors,Recurrent Brain Tumor,Recurrent Brain Tumors,Tumor, Brain
D002465 Cell Movement The movement of cells from one location to another. Distinguish from CYTOKINESIS which is the process of dividing the CYTOPLASM of a cell. Cell Migration,Locomotion, Cell,Migration, Cell,Motility, Cell,Movement, Cell,Cell Locomotion,Cell Motility,Cell Movements,Movements, Cell
D005910 Glioma Benign and malignant central nervous system neoplasms derived from glial cells (i.e., astrocytes, oligodendrocytes, and ependymocytes). Astrocytes may give rise to astrocytomas (ASTROCYTOMA) or glioblastoma multiforme (see GLIOBLASTOMA). Oligodendrocytes give rise to oligodendrogliomas (OLIGODENDROGLIOMA) and ependymocytes may undergo transformation to become EPENDYMOMA; CHOROID PLEXUS NEOPLASMS; or colloid cysts of the third ventricle. (From Escourolle et al., Manual of Basic Neuropathology, 2nd ed, p21) Glial Cell Tumors,Malignant Glioma,Mixed Glioma,Glial Cell Tumor,Glioma, Malignant,Glioma, Mixed,Gliomas,Gliomas, Malignant,Gliomas, Mixed,Malignant Gliomas,Mixed Gliomas,Tumor, Glial Cell,Tumors, Glial Cell
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000079962 RNA, Circular RNA molecules in which the 3' and 5' ends are covalently joined to form a closed continuous loop. They are resistant to digestion by EXORIBONUCLEASES. Circular Intronic RNA,Circular RNA,Circular RNAs,Closed Circular RNA,ciRNA,circRNA,circRNAs,Circular RNA, Closed,Intronic RNA, Circular,RNA, Circular Intronic,RNA, Closed Circular,RNAs, Circular
D015972 Gene Expression Regulation, Neoplastic Any of the processes by which nuclear, cytoplasmic, or intercellular factors influence the differential control of gene action in neoplastic tissue. Neoplastic Gene Expression Regulation,Regulation of Gene Expression, Neoplastic,Regulation, Gene Expression, Neoplastic
D042461 Vascular Endothelial Growth Factor A The original member of the family of endothelial cell growth factors referred to as VASCULAR ENDOTHELIAL GROWTH FACTORS. Vascular endothelial growth factor-A was originally isolated from tumor cells and referred to as "tumor angiogenesis factor" and "vascular permeability factor". Although expressed at high levels in certain tumor-derived cells it is produced by a wide variety of cell types. In addition to stimulating vascular growth and vascular permeability it may play a role in stimulating VASODILATION via NITRIC OXIDE-dependent pathways. Alternative splicing of the mRNA for vascular endothelial growth factor A results in several isoforms of the protein being produced. Vascular Endothelial Growth Factor,Vascular Endothelial Growth Factor-A,GD-VEGF,Glioma-Derived Vascular Endothelial Cell Growth Factor,VEGF,VEGF-A,Vascular Permeability Factor,Vasculotropin,Glioma Derived Vascular Endothelial Cell Growth Factor,Permeability Factor, Vascular
D045744 Cell Line, Tumor A cell line derived from cultured tumor cells. Tumor Cell Line,Cell Lines, Tumor,Line, Tumor Cell,Lines, Tumor Cell,Tumor Cell Lines
D049109 Cell Proliferation All of the processes involved in increasing CELL NUMBER including CELL DIVISION. Cell Growth in Number,Cellular Proliferation,Cell Multiplication,Cell Number Growth,Growth, Cell Number,Multiplication, Cell,Number Growth, Cell,Proliferation, Cell,Proliferation, Cellular
D035683 MicroRNAs Small double-stranded, non-protein coding RNAs, 21-25 nucleotides in length generated from single-stranded microRNA gene transcripts by the same RIBONUCLEASE III, Dicer, that produces small interfering RNAs (RNA, SMALL INTERFERING). They become part of the RNA-INDUCED SILENCING COMPLEX and repress the translation (TRANSLATION, GENETIC) of target RNA by binding to homologous 3'UTR region as an imperfect match. The small temporal RNAs (stRNAs), let-7 and lin-4, from C. elegans, are the first 2 miRNAs discovered, and are from a class of miRNAs involved in developmental timing. RNA, Small Temporal,Small Temporal RNA,miRNA,stRNA,Micro RNA,MicroRNA,Primary MicroRNA,Primary miRNA,miRNAs,pre-miRNA,pri-miRNA,MicroRNA, Primary,RNA, Micro,Temporal RNA, Small,miRNA, Primary,pre miRNA,pri miRNA

Related Publications

Ling Qi, and Weiyao Wang, and Guifang Zhao, and Hong Jiang, and Yu Zhang, and Donghai Zhao, and Hong Jin, and Hongquan Yu, and Haiyang Xu
March 2020, Molecular therapy. Nucleic acids,
Ling Qi, and Weiyao Wang, and Guifang Zhao, and Hong Jiang, and Yu Zhang, and Donghai Zhao, and Hong Jin, and Hongquan Yu, and Haiyang Xu
January 2018, Frontiers in molecular neuroscience,
Ling Qi, and Weiyao Wang, and Guifang Zhao, and Hong Jiang, and Yu Zhang, and Donghai Zhao, and Hong Jin, and Hongquan Yu, and Haiyang Xu
September 2019, Molecular therapy. Nucleic acids,
Ling Qi, and Weiyao Wang, and Guifang Zhao, and Hong Jiang, and Yu Zhang, and Donghai Zhao, and Hong Jin, and Hongquan Yu, and Haiyang Xu
January 2021, Cancer cell international,
Ling Qi, and Weiyao Wang, and Guifang Zhao, and Hong Jiang, and Yu Zhang, and Donghai Zhao, and Hong Jin, and Hongquan Yu, and Haiyang Xu
February 2021, Aging,
Ling Qi, and Weiyao Wang, and Guifang Zhao, and Hong Jiang, and Yu Zhang, and Donghai Zhao, and Hong Jin, and Hongquan Yu, and Haiyang Xu
January 2020, Computational and mathematical methods in medicine,
Ling Qi, and Weiyao Wang, and Guifang Zhao, and Hong Jiang, and Yu Zhang, and Donghai Zhao, and Hong Jin, and Hongquan Yu, and Haiyang Xu
March 2023, Genes & diseases,
Ling Qi, and Weiyao Wang, and Guifang Zhao, and Hong Jiang, and Yu Zhang, and Donghai Zhao, and Hong Jin, and Hongquan Yu, and Haiyang Xu
September 2020, Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie,
Ling Qi, and Weiyao Wang, and Guifang Zhao, and Hong Jiang, and Yu Zhang, and Donghai Zhao, and Hong Jin, and Hongquan Yu, and Haiyang Xu
January 2023, Computational and mathematical methods in medicine,
Ling Qi, and Weiyao Wang, and Guifang Zhao, and Hong Jiang, and Yu Zhang, and Donghai Zhao, and Hong Jin, and Hongquan Yu, and Haiyang Xu
October 2022, Metabolic brain disease,
Copied contents to your clipboard!