1 alpha,25-Dihydroxyvitamin D3[1 alpha,25-(OH)2D3]-26,23-lactone inhibits 1,25-(OH)2D3-mediated fusion of mouse bone marrow mononuclear cells. 1988

S Ishizuka, and N Kurihara, and S Hakeda, and N Maeda, and K Ikeda, and M Kumegawa, and A W Norman
Department of Biochemistry, Teijin Institute for Bio-Medical Research, Tokyo, Japan.

Vitamin D3 and its hormonally active metabolite 1,25-dihydroxyvitamin D3 [1,25-(OH)2D3] can be metabolized to a number of daughter metabolites, including 1 alpha,25-(OH)2D3-26,23-lactone; this latter compound has four diastereoisomers. The 23(S),25(R)-lactone (naturally occurring) and the 23(R),25(S)-1 alpha,25-(OH)2D3-26,23-lactone are both known to be able to inhibit bone resorption induced by 1 alpha,25-(OH)2D3 under in vivo or in vitro conditions. To understand the mechanism of the inhibitory action of these two isomers on bone resorption we investigated the effects of 1 alpha,25-(OH)2D3-26,23-lactone on unfractionated mouse bone marrow cells in vitro. The addition of 1 alpha,25-(OH)2D3 to these cultures dose-dependently stimulated the formation of multinucleated cells over a range of 10(-9) - 10(-7) M. The 23(S),25(S)- and 23(R),25(R)-1 alpha,25-(OH)2D3-26,23-lactones also increased the number of multinucleated cells, whereas the 23(S),25(R)- and 23(R),25(S)-1 alpha,25-(OH)2D3-26,23-lactones failed to do so. In addition, these latter two diastereomers inhibited the 1 alpha,25-(OH)2D3 stimulation of multinucleated cell formation, although the 23(S),25(S)- and 23(R),25(R)-1 alpha,25-(OH)2D3-26,23-lactones and 24R,25-(OH)2D3 did not. These multinucleated cells responded to calcitonin and contained tartrate-resistant acid phosphatase, both of which are characteristic of osteoclasts. The present data suggest that inhibition of multinucleated cell formation is the mechanism by which the 23(S),25(R)- or 23(R),25(S)-1 alpha,25-(OH)2D3-26,23-lactone inhibits bone resorption induced by 1 alpha,25-(OH)2D3.

UI MeSH Term Description Entries
D008813 Mice, Inbred ICR An inbred strain of mouse that is used as a general purpose research strain, for therapeutic drug testing, and for the genetic analysis of CARCINOGEN-induced COLON CANCER. Mice, Inbred ICRC,Mice, ICR,Mouse, ICR,Mouse, Inbred ICR,Mouse, Inbred ICRC,ICR Mice,ICR Mice, Inbred,ICR Mouse,ICR Mouse, Inbred,ICRC Mice, Inbred,ICRC Mouse, Inbred,Inbred ICR Mice,Inbred ICR Mouse,Inbred ICRC Mice,Inbred ICRC Mouse
D010010 Osteoclasts A large multinuclear cell associated with the BONE RESORPTION. An odontoclast, also called cementoclast, is cytomorphologically the same as an osteoclast and is involved in CEMENTUM resorption. Odontoclasts,Cementoclast,Cementoclasts,Odontoclast,Osteoclast
D001853 Bone Marrow The soft tissue filling the cavities of bones. Bone marrow exists in two types, yellow and red. Yellow marrow is found in the large cavities of large bones and consists mostly of fat cells and a few primitive blood cells. Red marrow is a hematopoietic tissue and is the site of production of erythrocytes and granular leukocytes. Bone marrow is made up of a framework of connective tissue containing branching fibers with the frame being filled with marrow cells. Marrow,Red Marrow,Yellow Marrow,Marrow, Bone,Marrow, Red,Marrow, Yellow
D001854 Bone Marrow Cells Cells contained in the bone marrow including fat cells (see ADIPOCYTES); STROMAL CELLS; MEGAKARYOCYTES; and the immediate precursors of most blood cells. Bone Marrow Cell,Cell, Bone Marrow,Cells, Bone Marrow,Marrow Cell, Bone,Marrow Cells, Bone
D001862 Bone Resorption Bone loss due to osteoclastic activity. Bone Loss, Osteoclastic,Osteoclastic Bone Loss,Bone Losses, Osteoclastic,Bone Resorptions,Loss, Osteoclastic Bone,Losses, Osteoclastic Bone,Osteoclastic Bone Losses,Resorption, Bone,Resorptions, Bone
D002116 Calcitonin A peptide hormone that lowers calcium concentration in the blood. In humans, it is released by thyroid cells and acts to decrease the formation and absorptive activity of osteoclasts. Its role in regulating plasma calcium is much greater in children and in certain diseases than in normal adults. Thyrocalcitonin,Calcitonin(1-32),Calcitrin,Ciba 47175-BA,Eel Calcitonin,Calcitonin, Eel,Ciba 47175 BA,Ciba 47175BA
D002117 Calcitriol The physiologically active form of vitamin D. It is formed primarily in the kidney by enzymatic hydroxylation of 25-hydroxycholecalciferol (CALCIFEDIOL). Its production is stimulated by low blood calcium levels and parathyroid hormone. Calcitriol increases intestinal absorption of calcium and phosphorus, and in concert with parathyroid hormone increases bone resorption. 1 alpha,25-Dihydroxycholecalciferol,1 alpha,25-Dihydroxyvitamin D3,1, 25-(OH)2D3,1,25(OH)2D3,1,25-Dihydroxycholecalciferol,1,25-Dihydroxyvitamin D3,1 alpha, 25-dihydroxy-20-epi-Vitamin D3,1,25(OH)2-20epi-D3,1,25-dihydroxy-20-epi-Vitamin D3,20-epi-1alpha,25-dihydroxycholecaliferol,Bocatriol,Calcijex,Calcitriol KyraMed,Calcitriol-Nefro,Decostriol,MC-1288,MC1288,Osteotriol,Renatriol,Rocaltrol,Silkis,Sitriol,Soltriol,Tirocal,1 alpha,25 Dihydroxyvitamin D3,1,25 Dihydroxycholecalciferol,1,25 Dihydroxyvitamin D3,1,25 dihydroxy 20 epi Vitamin D3,Calcitriol Nefro,D3, 1 alpha,25-Dihydroxyvitamin,D3, 1,25-Dihydroxyvitamin,D3, 1,25-dihydroxy-20-epi-Vitamin,KyraMed, Calcitriol,MC 1288
D002452 Cell Count The number of CELLS of a specific kind, usually measured per unit volume or area of sample. Cell Density,Cell Number,Cell Counts,Cell Densities,Cell Numbers,Count, Cell,Counts, Cell,Densities, Cell,Density, Cell,Number, Cell,Numbers, Cell
D002454 Cell Differentiation Progressive restriction of the developmental potential and increasing specialization of function that leads to the formation of specialized cells, tissues, and organs. Differentiation, Cell,Cell Differentiations,Differentiations, Cell
D002467 Cell Nucleus Within a eukaryotic cell, a membrane-limited body which contains chromosomes and one or more nucleoli (CELL NUCLEOLUS). The nuclear membrane consists of a double unit-type membrane which is perforated by a number of pores; the outermost membrane is continuous with the ENDOPLASMIC RETICULUM. A cell may contain more than one nucleus. (From Singleton & Sainsbury, Dictionary of Microbiology and Molecular Biology, 2d ed) Cell Nuclei,Nuclei, Cell,Nucleus, Cell

Related Publications

S Ishizuka, and N Kurihara, and S Hakeda, and N Maeda, and K Ikeda, and M Kumegawa, and A W Norman
November 1981, FEBS letters,
S Ishizuka, and N Kurihara, and S Hakeda, and N Maeda, and K Ikeda, and M Kumegawa, and A W Norman
November 1980, Proceedings of the National Academy of Sciences of the United States of America,
S Ishizuka, and N Kurihara, and S Hakeda, and N Maeda, and K Ikeda, and M Kumegawa, and A W Norman
February 1990, Endocrinology,
S Ishizuka, and N Kurihara, and S Hakeda, and N Maeda, and K Ikeda, and M Kumegawa, and A W Norman
October 1985, Archives of biochemistry and biophysics,
S Ishizuka, and N Kurihara, and S Hakeda, and N Maeda, and K Ikeda, and M Kumegawa, and A W Norman
May 1987, The Journal of biological chemistry,
S Ishizuka, and N Kurihara, and S Hakeda, and N Maeda, and K Ikeda, and M Kumegawa, and A W Norman
February 1995, Hormone and metabolic research = Hormon- und Stoffwechselforschung = Hormones et metabolisme,
S Ishizuka, and N Kurihara, and S Hakeda, and N Maeda, and K Ikeda, and M Kumegawa, and A W Norman
January 1983, Archives of biochemistry and biophysics,
S Ishizuka, and N Kurihara, and S Hakeda, and N Maeda, and K Ikeda, and M Kumegawa, and A W Norman
February 1984, Journal of steroid biochemistry,
S Ishizuka, and N Kurihara, and S Hakeda, and N Maeda, and K Ikeda, and M Kumegawa, and A W Norman
January 1989, Endocrinology,
Copied contents to your clipboard!