Penicillopepsin: 2.8 A structure, active site conformation and mechanistic implications. 1977

I N Hsu, and L T Delbaere, and M N James, and T Hofmann

The crystal structure of penicillopepsin, an extracellular acid protease isolated from the mold Penicillium janthinellum, has been determined at 2.8 A resolution by the method of multiple isomorphous replacement. The resulting electron density map computed from the native structure factor amplitudes and MIR phases has an overall mean figure of merit of 0.90. The molecule is decidedly nonspherical, with the majority of residues in beta-structure. There is an 18-stranded mixed beta-sheet which forms the structural core in the region of the active site. This site, identified by the covalent binding of two EPNP molecules to Asp-32 and Asp-215, is located in a deep groove which divides the molecule into two approximately equal lobes. Both aspartic acid residues in the active site are in intimate contact with one another and the carboxyl group of Asp-32 makes two other important hydrogen-bonded contacts: one with Ser-35 and the other with the main chain peptide bond between Thr-216 and Gly-217. A proposed mechanism for acid protease catalysis is similar in many aspects to that proposed for carboxypeptidase A. The electrophilic component which polarizes the substrate carbonyl bond in the acid proteases is the proton shared between the beta-carboxyl groups of Asp-32 and Asp-215. The beta-carboxyl group of Asp-32 removes a proton from a water molecule bound between this side chain and the substrate; the resultant OH- attacks the carbonyl carbon atom of the substrate molecule. The phenolic -OH group of Tyr-75 donates its proton to the amide nitrogen of the scissile bond of the substrate.

UI MeSH Term Description Entries
D008958 Models, Molecular Models used experimentally or theoretically to study molecular shape, electronic properties, or interactions; includes analogous molecules, computer-generated graphics, and mechanical structures. Molecular Models,Model, Molecular,Molecular Model
D010407 Penicillium A mitosporic Trichocomaceae fungal genus that develops fruiting organs resembling a broom. When identified, teleomorphs include EUPENICILLIUM and TALAROMYCES. Several species (but especially PENICILLIUM CHRYSOGENUM) are sources of the antibiotic penicillin. Penicilliums
D010434 Pepsin A Formed from pig pepsinogen by cleavage of one peptide bond. The enzyme is a single polypeptide chain and is inhibited by methyl 2-diaazoacetamidohexanoate. It cleaves peptides preferentially at the carbonyl linkages of phenylalanine or leucine and acts as the principal digestive enzyme of gastric juice. Pepsin,Pepsin 1,Pepsin 3
D010450 Endopeptidases A subclass of PEPTIDE HYDROLASES that catalyze the internal cleavage of PEPTIDES or PROTEINS. Endopeptidase,Peptide Peptidohydrolases
D011487 Protein Conformation The characteristic 3-dimensional shape of a protein, including the secondary, supersecondary (motifs), tertiary (domains) and quaternary structure of the peptide chain. PROTEIN STRUCTURE, QUATERNARY describes the conformation assumed by multimeric proteins (aggregates of more than one polypeptide chain). Conformation, Protein,Conformations, Protein,Protein Conformations
D005583 Fourier Analysis Analysis based on the mathematical function first formulated by Jean-Baptiste-Joseph Fourier in 1807. The function, known as the Fourier transform, describes the sinusoidal pattern of any fluctuating pattern in the physical world in terms of its amplitude and its phase. It has broad applications in biomedicine, e.g., analysis of the x-ray crystallography data pivotal in identifying the double helical nature of DNA and in analysis of other molecules, including viruses, and the modified back-projection algorithm universally used in computerized tomography imaging, etc. (From Segen, The Dictionary of Modern Medicine, 1992) Fourier Series,Fourier Transform,Analysis, Cyclic,Analysis, Fourier,Cyclic Analysis,Analyses, Cyclic,Cyclic Analyses,Series, Fourier,Transform, Fourier
D000595 Amino Acid Sequence The order of amino acids as they occur in a polypeptide chain. This is referred to as the primary structure of proteins. It is of fundamental importance in determining PROTEIN CONFORMATION. Protein Structure, Primary,Amino Acid Sequences,Sequence, Amino Acid,Sequences, Amino Acid,Primary Protein Structure,Primary Protein Structures,Protein Structures, Primary,Structure, Primary Protein,Structures, Primary Protein
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001665 Binding Sites The parts of a macromolecule that directly participate in its specific combination with another molecule. Combining Site,Binding Site,Combining Sites,Site, Binding,Site, Combining,Sites, Binding,Sites, Combining
D013552 Swine Any of various animals that constitute the family Suidae and comprise stout-bodied, short-legged omnivorous mammals with thick skin, usually covered with coarse bristles, a rather long mobile snout, and small tail. Included are the genera Babyrousa, Phacochoerus (wart hogs), and Sus, the latter containing the domestic pig (see SUS SCROFA). Phacochoerus,Pigs,Suidae,Warthogs,Wart Hogs,Hog, Wart,Hogs, Wart,Wart Hog

Related Publications

I N Hsu, and L T Delbaere, and M N James, and T Hofmann
June 1999, Biochemistry,
I N Hsu, and L T Delbaere, and M N James, and T Hofmann
July 1989, The Journal of biological chemistry,
I N Hsu, and L T Delbaere, and M N James, and T Hofmann
April 1995, Philosophical transactions of the Royal Society of London. Series B, Biological sciences,
I N Hsu, and L T Delbaere, and M N James, and T Hofmann
September 1970, Canadian journal of biochemistry,
I N Hsu, and L T Delbaere, and M N James, and T Hofmann
October 1989, Biochemistry,
I N Hsu, and L T Delbaere, and M N James, and T Hofmann
January 2001, The Journal of biological chemistry,
I N Hsu, and L T Delbaere, and M N James, and T Hofmann
October 2013, Biochemistry,
I N Hsu, and L T Delbaere, and M N James, and T Hofmann
January 1983, Journal of molecular biology,
I N Hsu, and L T Delbaere, and M N James, and T Hofmann
June 2003, Proceedings of the National Academy of Sciences of the United States of America,
Copied contents to your clipboard!