Mapping reward mechanisms by intracerebral self-stimulation in the rhesus monkey (Macaca mulatta). 2021

Douglas M Bowden, and Dwight C German
Department of Psychiatry and Behavioral Sciences and National Primate Research Center, University of Washington, Seattle, Washington.

The objective of the study was to identify brain structures that mediate reward as evidenced by positive reinforcing effects of stimuli on behavior. Testing by intracerebral self-stimulation enabled monkeys to inform whether activation of ~2900 sites in 74 structures of 4 sensorimotor pathways and 4 modulatory loop pathways was positive, negative or neutral. Stimulation was rewarding at 30% of sites, negative at 17%, neutral at 52%. Virtually all (99%) structures yielded some positive or negative sites, suggesting a ubiquitous distribution of pathways transmitting valence information. Mapping of sites to structures with dense versus sparse dopaminergic (DA) or noradrenergic (NA) innervation showed that stimulation of DA-pathways was rewarding or neutral. Stimulation of NA-pathways was not rewarding. Stimulation of association areas was generally rewarding; stimulation of purely sensory or motor structures was generally negative. Reward related more to structures' sensorimotor function than to density of DA-innervation. Stimulation of basal ganglia loop pathways was rewarding except in lateral globus pallidus, an inhibitory structure in the negative feedback loop; stimulation of the cerebellar loop was rewarding in anterior vermis and the spinocerebellar pathway; and stimulation of the hippocampal CA1 loop was rewarding. While most positive sites were in the DA reward system, numerous sites in sparsely DA-innervated posterior cingulate and parietal cortices may represent a separate reward system. DA-density represents concentrations of plastic synapses that mediate acquisition of new synaptic connections. DA-sparse areas may represent innate, genetically programmed reward-associated pathways. Implications of findings in regard to response habituation and addiction are discussed.

UI MeSH Term Description Entries
D008253 Macaca mulatta A species of the genus MACACA inhabiting India, China, and other parts of Asia. The species is used extensively in biomedical research and adapts very well to living with humans. Chinese Rhesus Macaques,Macaca mulatta lasiota,Monkey, Rhesus,Rhesus Monkey,Rhesus Macaque,Chinese Rhesus Macaque,Macaca mulatta lasiotas,Macaque, Rhesus,Rhesus Macaque, Chinese,Rhesus Macaques,Rhesus Macaques, Chinese,Rhesus Monkeys
D008297 Male Males
D009434 Neural Pathways Neural tracts connecting one part of the nervous system with another. Neural Interconnections,Interconnection, Neural,Interconnections, Neural,Neural Interconnection,Neural Pathway,Pathway, Neural,Pathways, Neural
D009473 Neuronal Plasticity The capacity of the NERVOUS SYSTEM to change its reactivity as the result of successive activations. Brain Plasticity,Plasticity, Neuronal,Axon Pruning,Axonal Pruning,Dendrite Arborization,Dendrite Pruning,Dendritic Arborization,Dendritic Pruning,Dendritic Remodeling,Neural Plasticity,Neurite Pruning,Neuronal Arborization,Neuronal Network Remodeling,Neuronal Pruning,Neuronal Remodeling,Neuroplasticity,Synaptic Plasticity,Synaptic Pruning,Arborization, Dendrite,Arborization, Dendritic,Arborization, Neuronal,Arborizations, Dendrite,Arborizations, Dendritic,Arborizations, Neuronal,Axon Prunings,Axonal Prunings,Brain Plasticities,Dendrite Arborizations,Dendrite Prunings,Dendritic Arborizations,Dendritic Prunings,Dendritic Remodelings,Network Remodeling, Neuronal,Network Remodelings, Neuronal,Neural Plasticities,Neurite Prunings,Neuronal Arborizations,Neuronal Network Remodelings,Neuronal Plasticities,Neuronal Prunings,Neuronal Remodelings,Neuroplasticities,Plasticities, Brain,Plasticities, Neural,Plasticities, Neuronal,Plasticities, Synaptic,Plasticity, Brain,Plasticity, Neural,Plasticity, Synaptic,Pruning, Axon,Pruning, Axonal,Pruning, Dendrite,Pruning, Dendritic,Pruning, Neurite,Pruning, Neuronal,Pruning, Synaptic,Prunings, Axon,Prunings, Axonal,Prunings, Dendrite,Prunings, Dendritic,Prunings, Neurite,Prunings, Neuronal,Prunings, Synaptic,Remodeling, Dendritic,Remodeling, Neuronal,Remodeling, Neuronal Network,Remodelings, Dendritic,Remodelings, Neuronal,Remodelings, Neuronal Network,Synaptic Plasticities,Synaptic Prunings
D009638 Norepinephrine Precursor of epinephrine that is secreted by the ADRENAL MEDULLA and is a widespread central and autonomic neurotransmitter. Norepinephrine is the principal transmitter of most postganglionic sympathetic fibers, and of the diffuse projection system in the brain that arises from the LOCUS CERULEUS. It is also found in plants and is used pharmacologically as a sympathomimetic. Levarterenol,Levonorepinephrine,Noradrenaline,Arterenol,Levonor,Levophed,Levophed Bitartrate,Noradrenaline Bitartrate,Noradrénaline tartrate renaudin,Norepinephrin d-Tartrate (1:1),Norepinephrine Bitartrate,Norepinephrine Hydrochloride,Norepinephrine Hydrochloride, (+)-Isomer,Norepinephrine Hydrochloride, (+,-)-Isomer,Norepinephrine d-Tartrate (1:1),Norepinephrine l-Tartrate (1:1),Norepinephrine l-Tartrate (1:1), (+,-)-Isomer,Norepinephrine l-Tartrate (1:1), Monohydrate,Norepinephrine l-Tartrate (1:1), Monohydrate, (+)-Isomer,Norepinephrine l-Tartrate (1:2),Norepinephrine l-Tartrate, (+)-Isomer,Norepinephrine, (+)-Isomer,Norepinephrine, (+,-)-Isomer
D001921 Brain The part of CENTRAL NERVOUS SYSTEM that is contained within the skull (CRANIUM). Arising from the NEURAL TUBE, the embryonic brain is comprised of three major parts including PROSENCEPHALON (the forebrain); MESENCEPHALON (the midbrain); and RHOMBENCEPHALON (the hindbrain). The developed brain consists of CEREBRUM; CEREBELLUM; and other structures in the BRAIN STEM. Encephalon
D001931 Brain Mapping Imaging techniques used to colocalize sites of brain functions or physiological activity with brain structures. Brain Electrical Activity Mapping,Functional Cerebral Localization,Topographic Brain Mapping,Brain Mapping, Topographic,Functional Cerebral Localizations,Mapping, Brain,Mapping, Topographic Brain
D004298 Dopamine One of the catecholamine NEUROTRANSMITTERS in the brain. It is derived from TYROSINE and is the precursor to NOREPINEPHRINE and EPINEPHRINE. Dopamine is a major transmitter in the extrapyramidal system of the brain, and important in regulating movement. A family of receptors (RECEPTORS, DOPAMINE) mediate its action. Hydroxytyramine,3,4-Dihydroxyphenethylamine,4-(2-Aminoethyl)-1,2-benzenediol,Dopamine Hydrochloride,Intropin,3,4 Dihydroxyphenethylamine,Hydrochloride, Dopamine
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001479 Basal Ganglia Large subcortical nuclear masses derived from the telencephalon and located in the basal regions of the cerebral hemispheres. Basal Nuclei,Ganglia, Basal,Basal Nuclear Complex,Ganglion, Basal,Basal Nuclear Complices,Nuclear Complex, Basal,Nuclei, Basal

Related Publications

Douglas M Bowden, and Dwight C German
January 1982, Applied neurophysiology,
Douglas M Bowden, and Dwight C German
October 1971, Experimental neurology,
Douglas M Bowden, and Dwight C German
July 1980, Journal of reproduction and fertility,
Douglas M Bowden, and Dwight C German
March 1946, Proceedings of the Society for Experimental Biology and Medicine. Society for Experimental Biology and Medicine (New York, N.Y.),
Douglas M Bowden, and Dwight C German
September 1969, Obstetrics and gynecology,
Douglas M Bowden, and Dwight C German
October 1978, Experimental eye research,
Douglas M Bowden, and Dwight C German
January 1975, American journal of physical anthropology,
Douglas M Bowden, and Dwight C German
January 1976, Comparative biochemistry and physiology. A, Comparative physiology,
Douglas M Bowden, and Dwight C German
January 1981, Advances in anatomy, embryology, and cell biology,
Douglas M Bowden, and Dwight C German
October 1971, Laboratory animal science,
Copied contents to your clipboard!