[The potential dependence of acetylcholine-activated membrane conductance in sympathetic ganglion neurons]. 1988

A A Selianko, and V A Derkach, and D E Kurennyĭ

Membrane conductance activated by acetylcholine (ACh-conductance) was studied in rat isolated superior cervical ganglion neurons by means of the patch-clamp method in the whole-cell recording mode. It was found that ACh-conductance was increased or decreased with membrane hyper- or depolarization, respectively. The decrease in ACh-conductance was not associated with the reversal of ACh-current or with the presence of Ca2+ ions in external solution. The time constant of voltage-jump relaxation of ACh-current revealed e-fold increase with membrane hyperpolarization by 70 mV, which corresponded to the voltage dependence of ACh-conductance. Basing upon these results it was concluded that the voltage dependence of ACh-conductance is mostly determined by the voltage dependence of nicotinic receptor channel gating kinetics.

UI MeSH Term Description Entries
D007478 Iontophoresis Therapeutic introduction of ions of soluble salts into tissues by means of electric current. In medical literature it is commonly used to indicate the process of increasing the penetration of drugs into surface tissues by the application of electric current. It has nothing to do with ION EXCHANGE; AIR IONIZATION nor PHONOPHORESIS, none of which requires current. Iontophoreses
D008564 Membrane Potentials The voltage differences across a membrane. For cellular membranes they are computed by subtracting the voltage measured outside the membrane from the voltage measured inside the membrane. They result from differences of inside versus outside concentration of potassium, sodium, chloride, and other ions across cells' or ORGANELLES membranes. For excitable cells, the resting membrane potentials range between -30 and -100 millivolts. Physical, chemical, or electrical stimuli can make a membrane potential more negative (hyperpolarization), or less negative (depolarization). Resting Potentials,Transmembrane Potentials,Delta Psi,Resting Membrane Potential,Transmembrane Electrical Potential Difference,Transmembrane Potential Difference,Difference, Transmembrane Potential,Differences, Transmembrane Potential,Membrane Potential,Membrane Potential, Resting,Membrane Potentials, Resting,Potential Difference, Transmembrane,Potential Differences, Transmembrane,Potential, Membrane,Potential, Resting,Potential, Transmembrane,Potentials, Membrane,Potentials, Resting,Potentials, Transmembrane,Resting Membrane Potentials,Resting Potential,Transmembrane Potential,Transmembrane Potential Differences
D009474 Neurons The basic cellular units of nervous tissue. Each neuron consists of a body, an axon, and dendrites. Their purpose is to receive, conduct, and transmit impulses in the NERVOUS SYSTEM. Nerve Cells,Cell, Nerve,Cells, Nerve,Nerve Cell,Neuron
D004553 Electric Conductivity The ability of a substrate to allow the passage of ELECTRONS. Electrical Conductivity,Conductivity, Electric,Conductivity, Electrical
D005728 Ganglia, Sympathetic Ganglia of the sympathetic nervous system including the paravertebral and the prevertebral ganglia. Among these are the sympathetic chain ganglia, the superior, middle, and inferior cervical ganglia, and the aorticorenal, celiac, and stellate ganglia. Celiac Ganglia,Sympathetic Ganglia,Celiac Ganglion,Ganglion, Sympathetic,Ganglia, Celiac,Ganglion, Celiac,Sympathetic Ganglion
D000109 Acetylcholine A neurotransmitter found at neuromuscular junctions, autonomic ganglia, parasympathetic effector junctions, a subset of sympathetic effector junctions, and at many sites in the central nervous system. 2-(Acetyloxy)-N,N,N-trimethylethanaminium,Acetilcolina Cusi,Acetylcholine Bromide,Acetylcholine Chloride,Acetylcholine Fluoride,Acetylcholine Hydroxide,Acetylcholine Iodide,Acetylcholine L-Tartrate,Acetylcholine Perchlorate,Acetylcholine Picrate,Acetylcholine Picrate (1:1),Acetylcholine Sulfate (1:1),Bromoacetylcholine,Chloroacetylcholine,Miochol,Acetylcholine L Tartrate,Bromide, Acetylcholine,Cusi, Acetilcolina,Fluoride, Acetylcholine,Hydroxide, Acetylcholine,Iodide, Acetylcholine,L-Tartrate, Acetylcholine,Perchlorate, Acetylcholine
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D013997 Time Factors Elements of limited time intervals, contributing to particular results or situations. Time Series,Factor, Time,Time Factor
D051381 Rats The common name for the genus Rattus. Rattus,Rats, Laboratory,Rats, Norway,Rattus norvegicus,Laboratory Rat,Laboratory Rats,Norway Rat,Norway Rats,Rat,Rat, Laboratory,Rat, Norway,norvegicus, Rattus
D066298 In Vitro Techniques Methods to study reactions or processes taking place in an artificial environment outside the living organism. In Vitro Test,In Vitro Testing,In Vitro Tests,In Vitro as Topic,In Vitro,In Vitro Technique,In Vitro Testings,Technique, In Vitro,Techniques, In Vitro,Test, In Vitro,Testing, In Vitro,Testings, In Vitro,Tests, In Vitro,Vitro Testing, In

Related Publications

A A Selianko, and V A Derkach, and D E Kurennyĭ
September 1968, Life sciences,
A A Selianko, and V A Derkach, and D E Kurennyĭ
May 1969, Life sciences,
A A Selianko, and V A Derkach, and D E Kurennyĭ
November 1997, Zhongguo yao li xue bao = Acta pharmacologica Sinica,
A A Selianko, and V A Derkach, and D E Kurennyĭ
March 1984, Brain research,
A A Selianko, and V A Derkach, and D E Kurennyĭ
August 1990, The Journal of physiology,
A A Selianko, and V A Derkach, and D E Kurennyĭ
August 1939, The Journal of physiology,
A A Selianko, and V A Derkach, and D E Kurennyĭ
October 1990, Sheng li xue bao : [Acta physiologica Sinica],
A A Selianko, and V A Derkach, and D E Kurennyĭ
February 2001, Pflugers Archiv : European journal of physiology,
A A Selianko, and V A Derkach, and D E Kurennyĭ
November 1987, Proceedings of the National Academy of Sciences of the United States of America,
A A Selianko, and V A Derkach, and D E Kurennyĭ
July 1987, Journal of neurophysiology,
Copied contents to your clipboard!