Ubiquitylation in DNA double-strand break repair. 2021

Mengfan Tang, and Siting Li, and Junjie Chen
Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.

Genome integrity is constantly challenged by various DNA lesions with DNA double-strand breaks (DSBs) as the most cytotoxic lesions. In order to faithfully repair DSBs, DNA damage response (DDR) signaling networks have evolved, which organize many multi-protein complexes to deal with the encountered DNA damage. Spatiotemporal dynamics of these protein complexes at DSBs are mainly modulated by post-translational modifications (PTMs). One of the most well-studied PTMs in DDR is ubiquitylation which can orchestrate cellular responses to DSBs, promote accurate DNA repair, and maintain genome integrity. Here, we summarize the recent advances of ubiquitin-dependent signaling in DDR and discuss how ubiquitylation crosstalks with other PTMs to control fundamental biological processes in DSB repair.

UI MeSH Term Description Entries
D004247 DNA A deoxyribonucleotide polymer that is the primary genetic material of all cells. Eukaryotic and prokaryotic organisms normally contain DNA in a double-stranded state, yet several important biological processes transiently involve single-stranded regions. DNA, which consists of a polysugar-phosphate backbone possessing projections of purines (adenine and guanine) and pyrimidines (thymine and cytosine), forms a double helix that is held together by hydrogen bonds between these purines and pyrimidines (adenine to thymine and guanine to cytosine). DNA, Double-Stranded,Deoxyribonucleic Acid,ds-DNA,DNA, Double Stranded,Double-Stranded DNA,ds DNA
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D015398 Signal Transduction The intracellular transfer of information (biological activation/inhibition) through a signal pathway. In each signal transduction system, an activation/inhibition signal from a biologically active molecule (hormone, neurotransmitter) is mediated via the coupling of a receptor/enzyme to a second messenger system or to an ion channel. Signal transduction plays an important role in activating cellular functions, cell differentiation, and cell proliferation. Examples of signal transduction systems are the GAMMA-AMINOBUTYRIC ACID-postsynaptic receptor-calcium ion channel system, the receptor-mediated T-cell activation pathway, and the receptor-mediated activation of phospholipases. Those coupled to membrane depolarization or intracellular release of calcium include the receptor-mediated activation of cytotoxic functions in granulocytes and the synaptic potentiation of protein kinase activation. Some signal transduction pathways may be part of larger signal transduction pathways; for example, protein kinase activation is part of the platelet activation signal pathway. Cell Signaling,Receptor-Mediated Signal Transduction,Signal Pathways,Receptor Mediated Signal Transduction,Signal Transduction Pathways,Signal Transduction Systems,Pathway, Signal,Pathway, Signal Transduction,Pathways, Signal,Pathways, Signal Transduction,Receptor-Mediated Signal Transductions,Signal Pathway,Signal Transduction Pathway,Signal Transduction System,Signal Transduction, Receptor-Mediated,Signal Transductions,Signal Transductions, Receptor-Mediated,System, Signal Transduction,Systems, Signal Transduction,Transduction, Signal,Transductions, Signal
D053903 DNA Breaks, Double-Stranded Interruptions in the sugar-phosphate backbone of DNA, across both strands adjacently. Double-Stranded DNA Breaks,Double-Strand DNA Breaks,Double-Stranded DNA Break,Break, Double-Strand DNA,Break, Double-Stranded DNA,Breaks, Double-Strand DNA,Breaks, Double-Stranded DNA,DNA Break, Double-Strand,DNA Break, Double-Stranded,DNA Breaks, Double Stranded,DNA Breaks, Double-Strand,Double Strand DNA Breaks,Double Stranded DNA Break,Double Stranded DNA Breaks,Double-Strand DNA Break
D054875 Ubiquitination The act of ligating UBIQUITINS to PROTEINS to form ubiquitin-protein ligase complexes to label proteins for transport to the PROTEASOME ENDOPEPTIDASE COMPLEX where proteolysis occurs. Ubiquitylation
D059766 DNA End-Joining Repair The repair of DOUBLE-STRAND DNA BREAKS by rejoining the broken ends of DNA to each other directly. Non-Homologous DNA End-Joining,End-Joining DNA Repair,MMEJ DNA Repair,Microhomology-Mediated End Joining Repair,NHEJ DNA Repair,Nonhomologous DNA End-Joining,DNA End Joining Repair,DNA End-Joining, Non-Homologous,DNA End-Joining, Nonhomologous,DNA Repair, End-Joining,DNA Repair, MMEJ,DNA Repair, NHEJ,End Joining DNA Repair,End-Joining Repair, DNA,End-Joining, Non-Homologous DNA,Microhomology Mediated End Joining Repair,Non Homologous DNA End Joining,Nonhomologous DNA End Joining,Repair, DNA End-Joining,Repair, End-Joining DNA,Repair, MMEJ DNA,Repair, NHEJ DNA
D059767 Recombinational DNA Repair Repair of DNA DAMAGE by exchange of DNA between matching sequences, usually between the allelic DNA (ALLELES) of sister chromatids. Homologous Recombination DNA Repair,Homologous Recombination Repair of DNA,Homology-Directed dsDNA Break Repair,Homologous Recombination Double-Stranded Break DNA Repair,Homologous Recombination Repair,Homologous Recombinational Repair,Recombination Repair,Recombinational Repair of DNA,DNA Recombinational Repair,DNA Repair, Recombinational,Homologous Recombination Double Stranded Break DNA Repair,Homologous Recombinational Repairs,Homology Directed dsDNA Break Repair,Recombination Repair, Homologous,Recombinational Repair, Homologous,Repair, Homologous Recombinational,Repair, Recombination,Repair, Recombinational DNA

Related Publications

Mengfan Tang, and Siting Li, and Junjie Chen
June 2020, Cancers,
Mengfan Tang, and Siting Li, and Junjie Chen
October 2010, The Journal of cell biology,
Mengfan Tang, and Siting Li, and Junjie Chen
February 2014, Oncogene,
Mengfan Tang, and Siting Li, and Junjie Chen
January 2016, Frontiers in genetics,
Mengfan Tang, and Siting Li, and Junjie Chen
October 1999, Current biology : CB,
Mengfan Tang, and Siting Li, and Junjie Chen
April 2018, Cold Spring Harbor protocols,
Mengfan Tang, and Siting Li, and Junjie Chen
August 2008, The Journal of cell biology,
Mengfan Tang, and Siting Li, and Junjie Chen
October 2014, Microbiology spectrum,
Mengfan Tang, and Siting Li, and Junjie Chen
December 2007, Oncogene,
Mengfan Tang, and Siting Li, and Junjie Chen
September 2004, Toxicological sciences : an official journal of the Society of Toxicology,
Copied contents to your clipboard!