Antimicrobial Resistance Gene Transfer from Campylobacter jejuni in Mono- and Dual-Species Biofilms. 2021

Luyao Ma, and Michael E Konkel, and Xiaonan Lu
Food, Nutrition and Health Program, Faculty of Land and Food Systems, The University of British Columbia, Vancouver, British Columbia, Canada.

Horizontal gene transfer (HGT) is a driving force for the dissemination of antimicrobial resistance (AMR) genes among Campylobacter jejuni organisms, a leading cause of foodborne gastroenteritis worldwide. Although HGT is well documented for C. jejuni planktonic cells, the role of C. jejuni biofilms in AMR spread that likely occurs in the environment is poorly understood. Here, we developed a cocultivation model to investigate the HGT of chromosomally encoded AMR genes between two C. jejuni F38011 AMR mutants in biofilms. Compared to planktonic cells, C. jejuni biofilms significantly promoted HGT (P < 0.05), resulting in an increase of HGT frequencies by up to 17.5-fold. Dynamic study revealed that HGT in biofilms increased at the early stage (i.e., from 24 h to 48 h) and remained stable during 48 to 72 h. Biofilms continuously released the HGT mutants into supernatant culture, indicating spontaneous dissemination of AMR to broader niches. DNase I treatment confirmed the role of natural transformation in genetic exchange. HGT was not associated with biofilm biomass, cell density, or bacterial metabolic activity, whereas the presence of extracellular DNA was negatively correlated with the altered HGT frequencies. HGT in biofilms also had a strain-to-strain variation. A synergistic HGT effect was observed between C. jejuni with different genomic backgrounds (i.e., C. jejuni NCTC 11168 chloramphenicol-resistant strain and F38011 kanamycin-resistant strain). C. jejuni performed HGT at the frequency of 10-7 in Escherichia coli-C. jejuni biofilms, while HGT was not detectable in Salmonella enterica-C. jejuni biofilms. IMPORTANCE Antimicrobial-resistant C. jejuni has been listed as a high priority of public health concern worldwide. To tackle the rapid evolution of AMR in C. jejuni, it is of great importance to understand the extent and characteristics of HGT in C. jejuni biofilms, which serve as the main survival strategy of this microbe in the farm-to-table continuum. In this study, we demonstrated that biofilms significantly enhanced HGT compared to the planktonic state (P < 0.05). Biofilm cultivation time and extracellular DNA (eDNA) amount were related to varied HGT frequencies. C. jejuni could spread AMR genes in both monospecies and dual-species biofilms, mimicking the survival mode of C. jejuni in food chains. These findings indicated that the risk and extent of AMR transmission among C. jejuni organisms have been underestimated, as previous HGT studies mainly focused on the planktonic state. Future AMR controlling measures can target biofilms and their main component eDNA.

UI MeSH Term Description Entries
D004269 DNA, Bacterial Deoxyribonucleic acid that makes up the genetic material of bacteria. Bacterial DNA
D016123 Campylobacter jejuni A species of bacteria that resemble small tightly coiled spirals. Its organisms are known to cause abortion in sheep and fever and enteritis in man and may be associated with enteric diseases of calves, lambs, and other animals. Campylobacter fetus subsp. jejuni,Vibrio hepaticus,Vibrio jejuni
D018441 Biofilms Encrustations formed from microbes (bacteria, algae, fungi, plankton, or protozoa) embedded in an EXTRACELLULAR POLYMERIC SUBSTANCE MATRIX that is secreted by the microbes. They occur on body surfaces such as teeth (DENTAL DEPOSITS); inanimate objects, and bodies of water. Biofilms are prevented from forming by treating surfaces with DENTIFRICES; DISINFECTANTS; ANTI-INFECTIVE AGENTS; and anti-fouling agents. Biofilm
D022761 Gene Transfer, Horizontal The naturally occurring transmission of genetic information between organisms, related or unrelated, circumventing parent-to-offspring transmission. Horizontal gene transfer may occur via a variety of naturally occurring processes such as GENETIC CONJUGATION; GENETIC TRANSDUCTION; and TRANSFECTION. It may result in a change of the recipient organism's genetic composition (TRANSFORMATION, GENETIC). Gene Transfer, Lateral,Horizontal Gene Transfer,Lateral Gene Transfer,Recombination, Interspecies,Recombination, Interspecific,Gene Transfers, Lateral,Interspecies Recombination,Interspecific Recombination,Lateral Gene Transfers
D024881 Drug Resistance, Bacterial The ability of bacteria to resist or to become tolerant to chemotherapeutic agents, antimicrobial agents, or antibiotics. This resistance may be acquired through gene mutation or foreign DNA in transmissible plasmids (R FACTORS). Antibiotic Resistance, Bacterial,Antibacterial Drug Resistance

Related Publications

Luyao Ma, and Michael E Konkel, and Xiaonan Lu
February 2012, Applied and environmental microbiology,
Luyao Ma, and Michael E Konkel, and Xiaonan Lu
April 2014, Microbial drug resistance (Larchmont, N.Y.),
Luyao Ma, and Michael E Konkel, and Xiaonan Lu
August 2012, The Journal of antimicrobial chemotherapy,
Luyao Ma, and Michael E Konkel, and Xiaonan Lu
February 2006, Epidemiology and infection,
Luyao Ma, and Michael E Konkel, and Xiaonan Lu
September 2004, The Veterinary record,
Luyao Ma, and Michael E Konkel, and Xiaonan Lu
January 2009, Foodborne pathogens and disease,
Luyao Ma, and Michael E Konkel, and Xiaonan Lu
April 2011, Journal of food protection,
Luyao Ma, and Michael E Konkel, and Xiaonan Lu
January 2017, Methods in molecular biology (Clifton, N.J.),
Luyao Ma, and Michael E Konkel, and Xiaonan Lu
December 2021, International journal of food microbiology,
Copied contents to your clipboard!