Ring-opened 7-methylguanine residues in DNA are a block to in vitro DNA synthesis. 1988

T R O'Connor, and S Boiteux, and J Laval
Groupe Réparation des Lésions Radio et Chimio Induites, UA 147 CNRS, Institut Gustave Roussy, Villejuif, France.

Single-stranded M13mp18 phage DNA was methylated with dimethylsulfate (DMS), and further treated with alkali to ring-open N7-methylguanine residues and yield 2-6-diamino-4-hydroxy-5N-methylformamidopyrimidine (Fapy) residues. Nucleotide incorporation during in vitro DNA synthesis on methylated template using E. coli DNA polymerase Klenow fragment (Kf polymerase) was reduced compared to the unmethylated template. Additional treatment of the methylated template with NaOH to generate Fapy residues, further reduced in vitro DNA synthesis compared to the synthesis on methylated templates, which suggested that Fapy residues were a block to in vitro DNA synthesis. Analysis of the termination products on sequencing gels, assuming that synthesis stops one base before a blocking lesion, indicated that arrest of DNA synthesis upon direct alkylation of single-stranded DNA occurred 1 base 3' to template adenine residues in the case of Kf polymerase and 1 base 3' to adenine and cystosine residues for T4 polymerase. When the alkylated templates were treated with NaOH to produce a template which converted all the N7-methylguanine residues to Fapy residues, the blocks to DNA synthesis were still observed one base before adenine residues. In addition to the stops previously observed for the methylated templates, however, new stops occurred one base 3' to template guanine residues for synthesis using both Kf polymerase and T4 polymerase. Fapy residues, therefore, represent a potential lethal lesion which may also arrest in vivo DNA synthesis if not repaired.

UI MeSH Term Description Entries
D011743 Pyrimidines A family of 6-membered heterocyclic compounds occurring in nature in a wide variety of forms. They include several nucleic acid constituents (CYTOSINE; THYMINE; and URACIL) and form the basic structure of the barbiturates.
D004259 DNA-Directed DNA Polymerase DNA-dependent DNA polymerases found in bacteria, animal and plant cells. During the replication process, these enzymes catalyze the addition of deoxyribonucleotide residues to the end of a DNA strand in the presence of DNA as template-primer. They also possess exonuclease activity and therefore function in DNA repair. DNA Polymerase,DNA Polymerases,DNA-Dependent DNA Polymerases,DNA Polymerase N3,DNA Dependent DNA Polymerases,DNA Directed DNA Polymerase,DNA Polymerase, DNA-Directed,DNA Polymerases, DNA-Dependent,Polymerase N3, DNA,Polymerase, DNA,Polymerase, DNA-Directed DNA,Polymerases, DNA,Polymerases, DNA-Dependent DNA
D004261 DNA Replication The process by which a DNA molecule is duplicated. Autonomous Replication,Replication, Autonomous,Autonomous Replications,DNA Replications,Replication, DNA,Replications, Autonomous,Replications, DNA
D004277 DNA, Single-Stranded A single chain of deoxyribonucleotides that occurs in some bacteria and viruses. It usually exists as a covalently closed circle. Single-Stranded DNA,DNA, Single Stranded,Single Stranded DNA
D004279 DNA, Viral Deoxyribonucleic acid that makes up the genetic material of viruses. Viral DNA
D006147 Guanine
D001435 Bacteriophages Viruses whose hosts are bacterial cells. Phages,Bacteriophage,Phage
D001483 Base Sequence The sequence of PURINES and PYRIMIDINES in nucleic acids and polynucleotides. It is also called nucleotide sequence. DNA Sequence,Nucleotide Sequence,RNA Sequence,DNA Sequences,Base Sequences,Nucleotide Sequences,RNA Sequences,Sequence, Base,Sequence, DNA,Sequence, Nucleotide,Sequence, RNA,Sequences, Base,Sequences, DNA,Sequences, Nucleotide,Sequences, RNA
D013698 Templates, Genetic Macromolecular molds for the synthesis of complementary macromolecules, as in DNA REPLICATION; GENETIC TRANSCRIPTION of DNA to RNA, and GENETIC TRANSLATION of RNA into POLYPEPTIDES. Genetic Template,Genetic Templates,Template, Genetic

Related Publications

T R O'Connor, and S Boiteux, and J Laval
May 1989, Carcinogenesis,
T R O'Connor, and S Boiteux, and J Laval
January 1989, Chemico-biological interactions,
T R O'Connor, and S Boiteux, and J Laval
January 1983, Biochemical and biophysical research communications,
T R O'Connor, and S Boiteux, and J Laval
June 1992, Nucleic acids research,
T R O'Connor, and S Boiteux, and J Laval
January 1999, Acta biochimica Polonica,
T R O'Connor, and S Boiteux, and J Laval
July 1984, Nucleic acids research,
T R O'Connor, and S Boiteux, and J Laval
July 1993, The Journal of biological chemistry,
Copied contents to your clipboard!