p62/Sequestosome 1 regulates transforming growth factor beta signaling and epithelial to mesenchymal transition in A549 cells. 2021

Charles B Trelford, and Evelyn Ng, and Craig I Campbell, and Gianni M Di Guglielmo
Schulich School of Medicine and Dentistry, Western University, Department of Physiology and Pharmacology, London, Ontario N6A 5B7, Canada.

Transforming growth factor beta (TGFβ) receptor trafficking regulates many TGFβ-dependent cellular outcomes including epithelial to mesenchymal transition (EMT). EMT in A549 non-small cell lung cancer (NSCLC) cells has recently been linked to the regulation of cellular autophagy. Here, we investigated the role of the autophagy cargo receptor, p62/sequestosome 1 (SQSTM1), in regulating TGFβ receptor trafficking, TGFβ1-dependent Smad2 phosphorylation and EMT in A549 NSCLC cells. Using immunofluorescence microscopy, p62/SQSTM1 was observed to co-localize with TGFβ receptors in the late endosome. Small interfering RNA (SiRNA)-mediated silencing of p62/SQSTM1 resulted in an attenuated time-course of Smad2 phosphorylation but did not alter Smad2 nuclear translocation. However, p62/SQSTM1 silencing promoted TGFβ1-dependent EMT marker expression, actin stress fiber formation and A549 cell migration. We further observed that Smad4-independent TGFβ1 signaling decreased p62/SQSTM1 protein levels via a proteasome-dependent mechanism. Although p62/SQSTM1 silencing did not impede TGFβ-dependent autophagy, our results suggest that p62/SQSTM1 may aid in maintaining A549 cells in an epithelial state and TGFβ1 decreases p62/SQSTM1 prior to inducing EMT and autophagy.

UI MeSH Term Description Entries
D008175 Lung Neoplasms Tumors or cancer of the LUNG. Cancer of Lung,Lung Cancer,Pulmonary Cancer,Pulmonary Neoplasms,Cancer of the Lung,Neoplasms, Lung,Neoplasms, Pulmonary,Cancer, Lung,Cancer, Pulmonary,Cancers, Lung,Cancers, Pulmonary,Lung Cancers,Lung Neoplasm,Neoplasm, Lung,Neoplasm, Pulmonary,Pulmonary Cancers,Pulmonary Neoplasm
D002289 Carcinoma, Non-Small-Cell Lung A heterogeneous aggregate of at least three distinct histological types of lung cancer, including SQUAMOUS CELL CARCINOMA; ADENOCARCINOMA; and LARGE CELL CARCINOMA. They are dealt with collectively because of their shared treatment strategy. Carcinoma, Non-Small Cell Lung,Non-Small Cell Lung Cancer,Non-Small Cell Lung Carcinoma,Non-Small-Cell Lung Carcinoma,Nonsmall Cell Lung Cancer,Carcinoma, Non Small Cell Lung,Carcinomas, Non-Small-Cell Lung,Lung Carcinoma, Non-Small-Cell,Lung Carcinomas, Non-Small-Cell,Non Small Cell Lung Carcinoma,Non-Small-Cell Lung Carcinomas
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000071456 Sequestosome-1 Protein A multidomain protein that is highly conserved among multicellular organisms. It contains a ZZ-type ZINC FINGER domain, C-terminal UBIQUITIN - associated (UBA) domain, and interacts with many other signaling proteins and enzymes including, atypical PROTEIN KINASE C; TNF RECEPTOR-ASSOCIATED FACTOR 6; subunits of the mTORC1 complex, and CASPASE-8. It functions in AUTOPHAGY as a receptor for the degradation of ubiquitinated substrates, and to co-ordinate signaling in response to OXIDATIVE STRESS. EBI3-Associated Protein of 60 KDa,EBIAP Protein,Phosphotyrosine-Independent Ligand For The Lck SH2 Domain Of 62 Kda,Ubiquitin-Binding Protein p62,EBI3 Associated Protein of 60 KDa,Phosphotyrosine Independent Ligand For The Lck SH2 Domain Of 62 Kda,Sequestosome 1 Protein,Ubiquitin Binding Protein p62
D000072283 A549 Cells An immortalized cell line derived from human ADENOCARCINOMA, ALVEOLAR basal epithelial cells isolated from the lungs of a male patient in 1972. The cell line is positive for KERATIN, can synthesize LECITHIN, and contains high levels of POLYUNSATURATED FATTY ACIDS in its PLASMA MEMBRANE. It is used as a model for PULMONARY ALVEOLI function and virus infections, as a TRANSFECTION host, and for PRECLINICAL DRUG EVALUATION. A549 Cell Line,A549 Cell,A549 Cell Lines,Cell Line, A549,Cell Lines, A549,Cell, A549,Cells, A549
D001343 Autophagy The segregation and degradation of various cytoplasmic constituents via engulfment by MULTIVESICULAR BODIES; VACUOLES; or AUTOPHAGOSOMES and their digestion by LYSOSOMES. It plays an important role in BIOLOGICAL METAMORPHOSIS and in the removal of bone by OSTEOCLASTS. Defective autophagy is associated with various diseases, including NEURODEGENERATIVE DISEASES and cancer. Autophagocytosis,ER-Phagy,Lipophagy,Nucleophagy,Reticulophagy,Ribophagy,Autophagy, Cellular,Cellular Autophagy,ER Phagy
D016212 Transforming Growth Factor beta A factor synthesized in a wide variety of tissues. It acts synergistically with TGF-alpha in inducing phenotypic transformation and can also act as a negative autocrine growth factor. TGF-beta has a potential role in embryonal development, cellular differentiation, hormone secretion, and immune function. TGF-beta is found mostly as homodimer forms of separate gene products TGF-beta1, TGF-beta2 or TGF-beta3. Heterodimers composed of TGF-beta1 and 2 (TGF-beta1.2) or of TGF-beta2 and 3 (TGF-beta2.3) have been isolated. The TGF-beta proteins are synthesized as precursor proteins. Bone-Derived Transforming Growth Factor,Platelet Transforming Growth Factor,TGF-beta,Milk Growth Factor,TGFbeta,Bone Derived Transforming Growth Factor,Factor, Milk Growth,Growth Factor, Milk
D053773 Transforming Growth Factor beta1 A subtype of transforming growth factor beta that is synthesized by a wide variety of cells. It is synthesized as a precursor molecule that is cleaved to form mature TGF-beta 1 and TGF-beta1 latency-associated peptide. The association of the cleavage products results in the formation a latent protein which must be activated to bind its receptor. Defects in the gene that encodes TGF-beta1 are the cause of CAMURATI-ENGELMANN SYNDROME. TGF-beta1,Transforming Growth Factor-beta1,TGF-beta-1,TGF-beta1 Latency-Associated Protein,TGF-beta1LAP,Transforming Growth Factor beta 1 Latency Associated Peptide,Transforming Growth Factor beta I,Latency-Associated Protein, TGF-beta1,TGF beta 1,TGF beta1 Latency Associated Protein,TGF beta1LAP
D058750 Epithelial-Mesenchymal Transition Phenotypic changes of EPITHELIAL CELLS to MESENCHYME type, which increase cell mobility critical in many developmental processes such as NEURAL TUBE development. NEOPLASM METASTASIS and DISEASE PROGRESSION may also induce this transition. Epithelial-Mesenchymal Transformation,Epithelial Mesenchymal Transformation,Epithelial Mesenchymal Transition,Transformation, Epithelial-Mesenchymal,Transition, Epithelial-Mesenchymal

Related Publications

Charles B Trelford, and Evelyn Ng, and Craig I Campbell, and Gianni M Di Guglielmo
October 2007, Journal of Korean medical science,
Charles B Trelford, and Evelyn Ng, and Craig I Campbell, and Gianni M Di Guglielmo
October 2020, Chinese medical journal,
Charles B Trelford, and Evelyn Ng, and Craig I Campbell, and Gianni M Di Guglielmo
January 2009, Proceedings of the Japan Academy. Series B, Physical and biological sciences,
Charles B Trelford, and Evelyn Ng, and Craig I Campbell, and Gianni M Di Guglielmo
December 2020, Environmental toxicology,
Charles B Trelford, and Evelyn Ng, and Craig I Campbell, and Gianni M Di Guglielmo
March 2022, Journal of cellular biochemistry,
Charles B Trelford, and Evelyn Ng, and Craig I Campbell, and Gianni M Di Guglielmo
January 2008, American journal of respiratory cell and molecular biology,
Charles B Trelford, and Evelyn Ng, and Craig I Campbell, and Gianni M Di Guglielmo
August 2010, The Journal of biological chemistry,
Charles B Trelford, and Evelyn Ng, and Craig I Campbell, and Gianni M Di Guglielmo
April 2009, Cancer research,
Charles B Trelford, and Evelyn Ng, and Craig I Campbell, and Gianni M Di Guglielmo
May 2010, Biochemical and biophysical research communications,
Charles B Trelford, and Evelyn Ng, and Craig I Campbell, and Gianni M Di Guglielmo
July 2006, The Journal of cell biology,
Copied contents to your clipboard!