ORMDL3 regulates poly I:C induced inflammatory responses in airway epithelial cells. 2021

Gemma Laura, and Yi Liu, and Kieran Fernandes, and Saffron A G Willis-Owen, and Kazuhiro Ito, and William O Cookson, and Miriam F Moffatt, and Youming Zhang
National Heart and Lung Institute, Imperial College London, London, SW3 6LY, UK.

BACKGROUND Oroscomucoid 3 (ORMDL3) has been linked to susceptibility of childhood asthma and respiratory viral infection. Polyinosinic-polycytidylic acid (poly I:C) is a synthetic analog of viral double-stranded RNA, a toll-like receptor 3 (TLR3) ligand and mimic of viral infection. METHODS To investigate the functional role of ORMDL3 in the poly I:C-induced inflammatory response in airway epithelial cells, ORMDL3 knockdown and over-expression models were established in human A549 epithelial cells and primary normal human bronchial epithelial (NHBE) cells. The cells were stimulated with poly I:C or the Th17 cytokine IL-17A. IL-6 and IL-8 levels in supernatants,  mRNA levels of genes in the TLR3 pathway and inflammatory response from cell pellets were measured. ORMDL3 knockdown models in A549 and BEAS-2B epithelial cells were then infected with live human rhinovirus (HRV16) followed by IL-6 and IL-8 measurement. RESULTS ORMDL3 knockdown and over-expression had little influence on the transcript levels of TLR3 in airway epithelial cells. Time course studies showed that ORMDL3-deficient A549 and NHBE cells had an attenuated IL-6 and IL-8 response to poly I:C stimulation. A549 and NHBE cells over-expressing ORMDL3 released relatively more IL-6 and IL-8 following poly I:C stimulation. IL-17A exhibited a similar inflammatory response in ORMDL3 knockdown and over-expressing cells, but co-stimulation of poly I:C and IL-17A did not significantly enhance the IL-6 and IL-8 response. Transcript abundance of IFNB following poly I:C stimulation was not significantly altered by ORMDL3 knockdown or over-expression. Dampening of the IL-6 response by ORMDL3 knockdown was confirmed in HRV16 infected BEAS-2B and A549 cells. CONCLUSIONS ORMDL3 regulates the viral inflammatory response in airway epithelial cells via mechanisms independent of the TLR3 pathway.

UI MeSH Term Description Entries
D008565 Membrane Proteins Proteins which are found in membranes including cellular and intracellular membranes. They consist of two types, peripheral and integral proteins. They include most membrane-associated enzymes, antigenic proteins, transport proteins, and drug, hormone, and lectin receptors. Cell Membrane Protein,Cell Membrane Proteins,Cell Surface Protein,Cell Surface Proteins,Integral Membrane Proteins,Membrane-Associated Protein,Surface Protein,Surface Proteins,Integral Membrane Protein,Membrane Protein,Membrane-Associated Proteins,Membrane Associated Protein,Membrane Associated Proteins,Membrane Protein, Cell,Membrane Protein, Integral,Membrane Proteins, Integral,Protein, Cell Membrane,Protein, Cell Surface,Protein, Integral Membrane,Protein, Membrane,Protein, Membrane-Associated,Protein, Surface,Proteins, Cell Membrane,Proteins, Cell Surface,Proteins, Integral Membrane,Proteins, Membrane,Proteins, Membrane-Associated,Proteins, Surface,Surface Protein, Cell
D011070 Poly I-C Interferon inducer consisting of a synthetic, mismatched double-stranded RNA. The polymer is made of one strand each of polyinosinic acid and polycytidylic acid. Poly(I-C),Poly(rI).Poly(rC),Polyinosinic-Polycytidylic Acid,Polyinosinic-Polycytidylic Acid (High MW),Polyriboinosinic-Polyribocytidylic Acid,Polyribose Inosin-Cytidil,Inosin-Cytidil, Polyribose,Poly I C,Polyinosinic Polycytidylic Acid,Polyriboinosinic Polyribocytidylic Acid,Polyribose Inosin Cytidil
D001980 Bronchi The larger air passages of the lungs arising from the terminal bifurcation of the TRACHEA. They include the largest two primary bronchi which branch out into secondary bronchi, and tertiary bronchi which extend into BRONCHIOLES and PULMONARY ALVEOLI. Primary Bronchi,Primary Bronchus,Secondary Bronchi,Secondary Bronchus,Tertiary Bronchi,Tertiary Bronchus,Bronchi, Primary,Bronchi, Secondary,Bronchi, Tertiary,Bronchus,Bronchus, Primary,Bronchus, Secondary,Bronchus, Tertiary
D004847 Epithelial Cells Cells that line the inner and outer surfaces of the body by forming cellular layers (EPITHELIUM) or masses. Epithelial cells lining the SKIN; the MOUTH; the NOSE; and the ANAL CANAL derive from ectoderm; those lining the RESPIRATORY SYSTEM and the DIGESTIVE SYSTEM derive from endoderm; others (CARDIOVASCULAR SYSTEM and LYMPHATIC SYSTEM) derive from mesoderm. Epithelial cells can be classified mainly by cell shape and function into squamous, glandular and transitional epithelial cells. Adenomatous Epithelial Cells,Columnar Glandular Epithelial Cells,Cuboidal Glandular Epithelial Cells,Glandular Epithelial Cells,Squamous Cells,Squamous Epithelial Cells,Transitional Epithelial Cells,Adenomatous Epithelial Cell,Cell, Adenomatous Epithelial,Cell, Epithelial,Cell, Glandular Epithelial,Cell, Squamous,Cell, Squamous Epithelial,Cell, Transitional Epithelial,Cells, Adenomatous Epithelial,Cells, Epithelial,Cells, Glandular Epithelial,Cells, Squamous,Cells, Squamous Epithelial,Cells, Transitional Epithelial,Epithelial Cell,Epithelial Cell, Adenomatous,Epithelial Cell, Glandular,Epithelial Cell, Squamous,Epithelial Cell, Transitional,Epithelial Cells, Adenomatous,Epithelial Cells, Glandular,Epithelial Cells, Squamous,Epithelial Cells, Transitional,Glandular Epithelial Cell,Squamous Cell,Squamous Epithelial Cell,Transitional Epithelial Cell
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000072283 A549 Cells An immortalized cell line derived from human ADENOCARCINOMA, ALVEOLAR basal epithelial cells isolated from the lungs of a male patient in 1972. The cell line is positive for KERATIN, can synthesize LECITHIN, and contains high levels of POLYUNSATURATED FATTY ACIDS in its PLASMA MEMBRANE. It is used as a model for PULMONARY ALVEOLI function and virus infections, as a TRANSFECTION host, and for PRECLINICAL DRUG EVALUATION. A549 Cell Line,A549 Cell,A549 Cell Lines,Cell Line, A549,Cell Lines, A549,Cell, A549,Cells, A549
D001249 Asthma A form of bronchial disorder with three distinct components: airway hyper-responsiveness (RESPIRATORY HYPERSENSITIVITY), airway INFLAMMATION, and intermittent AIRWAY OBSTRUCTION. It is characterized by spasmodic contraction of airway smooth muscle, WHEEZING, and dyspnea (DYSPNEA, PAROXYSMAL). Asthma, Bronchial,Bronchial Asthma,Asthmas
D014777 Virus Diseases A general term for diseases caused by viruses. Viral Diseases,Viral Infections,Virus Infections,Disease, Viral,Disease, Virus,Diseases, Viral,Diseases, Virus,Infection, Viral,Infection, Virus,Infections, Viral,Infections, Virus,Viral Disease,Viral Infection,Virus Disease,Virus Infection
D015850 Interleukin-6 A cytokine that stimulates the growth and differentiation of B-LYMPHOCYTES and is also a growth factor for HYBRIDOMAS and plasmacytomas. It is produced by many different cells including T-LYMPHOCYTES; MONOCYTES; and FIBROBLASTS. Hepatocyte-Stimulating Factor,Hybridoma Growth Factor,IL-6,MGI-2,Myeloid Differentiation-Inducing Protein,Plasmacytoma Growth Factor,B Cell Stimulatory Factor-2,B-Cell Differentiation Factor,B-Cell Differentiation Factor-2,B-Cell Stimulatory Factor 2,B-Cell Stimulatory Factor-2,BSF-2,Differentiation Factor, B-Cell,Differentiation Factor-2, B-Cell,IFN-beta 2,IL6,Interferon beta-2,B Cell Differentiation Factor,B Cell Differentiation Factor 2,B Cell Stimulatory Factor 2,Differentiation Factor 2, B Cell,Differentiation Factor, B Cell,Differentiation-Inducing Protein, Myeloid,Growth Factor, Hybridoma,Growth Factor, Plasmacytoma,Hepatocyte Stimulating Factor,Interferon beta 2,Interleukin 6,Myeloid Differentiation Inducing Protein,beta-2, Interferon
D016209 Interleukin-8 A member of the CXC chemokine family that plays a role in the regulation of the acute inflammatory response. It is secreted by variety of cell types and induces CHEMOTAXIS of NEUTROPHILS and other inflammatory cells. CXCL8 Chemokine,Chemokine CXCL8,Chemotactic Factor, Macrophage-Derived,Chemotactic Factor, Neutrophil, Monocyte-Derived,IL-8,Neutrophil-Activating Peptide, Lymphocyte-Derived,Neutrophil-Activating Peptide, Monocyte-Derived,AMCF-I,Alveolar Macrophage Chemotactic Factor-I,Anionic Neutrophil-Activating Peptide,Chemokines, CXCL8,Chemotactic Factor, Neutrophil,Granulocyte Chemotactic Peptide-Interleukin-8,IL8,Monocyte-Derived Neutrophil Chemotactic Factor,Neutrophil Activation Factor,Alveolar Macrophage Chemotactic Factor I,Anionic Neutrophil Activating Peptide,CXCL8 Chemokines,CXCL8, Chemokine,Chemokine, CXCL8,Chemotactic Factor, Macrophage Derived,Chemotactic Peptide-Interleukin-8, Granulocyte,Granulocyte Chemotactic Peptide Interleukin 8,Interleukin 8,Lymphocyte-Derived Neutrophil-Activating Peptide,Macrophage-Derived Chemotactic Factor,Monocyte-Derived Neutrophil-Activating Peptide,Neutrophil Activating Peptide, Lymphocyte Derived,Neutrophil Activating Peptide, Monocyte Derived,Neutrophil Chemotactic Factor,Neutrophil-Activating Peptide, Anionic,Peptide, Anionic Neutrophil-Activating

Related Publications

Gemma Laura, and Yi Liu, and Kieran Fernandes, and Saffron A G Willis-Owen, and Kazuhiro Ito, and William O Cookson, and Miriam F Moffatt, and Youming Zhang
April 2015, Physiological reports,
Gemma Laura, and Yi Liu, and Kieran Fernandes, and Saffron A G Willis-Owen, and Kazuhiro Ito, and William O Cookson, and Miriam F Moffatt, and Youming Zhang
November 2023, Viruses,
Gemma Laura, and Yi Liu, and Kieran Fernandes, and Saffron A G Willis-Owen, and Kazuhiro Ito, and William O Cookson, and Miriam F Moffatt, and Youming Zhang
August 2015, European journal of pharmacology,
Gemma Laura, and Yi Liu, and Kieran Fernandes, and Saffron A G Willis-Owen, and Kazuhiro Ito, and William O Cookson, and Miriam F Moffatt, and Youming Zhang
January 2020, Frontiers in cellular and infection microbiology,
Gemma Laura, and Yi Liu, and Kieran Fernandes, and Saffron A G Willis-Owen, and Kazuhiro Ito, and William O Cookson, and Miriam F Moffatt, and Youming Zhang
December 2019, Scientific reports,
Gemma Laura, and Yi Liu, and Kieran Fernandes, and Saffron A G Willis-Owen, and Kazuhiro Ito, and William O Cookson, and Miriam F Moffatt, and Youming Zhang
April 2022, The Journal of allergy and clinical immunology,
Gemma Laura, and Yi Liu, and Kieran Fernandes, and Saffron A G Willis-Owen, and Kazuhiro Ito, and William O Cookson, and Miriam F Moffatt, and Youming Zhang
April 2017, Animal genetics,
Gemma Laura, and Yi Liu, and Kieran Fernandes, and Saffron A G Willis-Owen, and Kazuhiro Ito, and William O Cookson, and Miriam F Moffatt, and Youming Zhang
October 2014, Journal of clinical & cellular immunology,
Gemma Laura, and Yi Liu, and Kieran Fernandes, and Saffron A G Willis-Owen, and Kazuhiro Ito, and William O Cookson, and Miriam F Moffatt, and Youming Zhang
May 2009, Clinical and experimental immunology,
Gemma Laura, and Yi Liu, and Kieran Fernandes, and Saffron A G Willis-Owen, and Kazuhiro Ito, and William O Cookson, and Miriam F Moffatt, and Youming Zhang
January 2021, Frontiers in cellular and infection microbiology,
Copied contents to your clipboard!